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Abstract

Evidence from field studies suggests that Culex pipiens, the primary mosquito vector of West Nile virus (WNV) in the
northeastern and north central United States, feeds preferentially on American robins (Turdus migratorius). To determine the
contribution of innate preferences to observed preference patterns in the field, we conducted host preference trials with a
known number of adult female C. pipiens in outdoor cages comparing the relative attractiveness of American robins with
two common sympatric bird species, European starling, Sternus vulgaris and house sparrow, Passer domesticus. Host seeking
C. pipiens were three times more likely to enter robin-baited traps when with the alternate host was a European starling
(n = 4 trials; OR = 3.06; CI [1.42–6.46]) and almost twice more likely when the alternative was a house sparrow (n = 8 trials;
OR = 1.80; CI = [1.22–2.90]). There was no difference in the probability of trap entry when two robins were offered (n = 8
trials). Logistic regression analysis determined that the age, sex and weight of the birds, the date of the trial, starting-time,
temperature, humidity, wind-speed and age of the mosquitoes had no effect on the probability of a choosing a robin over
an alternate bird. Findings indicate that preferential feeding by C. pipiens mosquitoes on certain avian hosts is likely to be
inherent, and we discuss the implications innate host preferences may have on enzootic WNV transmission.
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Introduction

Heterogeneities in contact rates between arthropod vectors and

hosts are important to vector-borne disease dynamics, because

they can result in increased disease transmission if vector blood

meals occur more commonly on pathogen-competent hosts. In

contrast, transmission may be reduced if blood meals are ‘diluted’

by feeding on non-competent hosts.

The rate of contact is influenced by a variety of factors including

innate host preferences of the vector, host availability and

landscape composition and configuration. Traditional means for

determining mosquito host-preferences in the field are to estimate

the proportion of blood meals on certain hosts [1] or, more

specifically, to calculate a feeding index, where the proportion of

blood meals acquired from a specific host is assessed in relation to

the abundance of that host within the community of potential

hosts [2,3].

To control for environmental confounders influencing contact

rates, host-choice experiments using traps baited with whole-host

odors have been conducted to determine innate host preferences

of a vector. Mainly focused on Anopheles spp. malaria vectors, these

experiments have demonstrated preferential feeding for individu-

als of a certain host species [4–12]. A limited number of host-

preference experiments conducted with other mosquito genera

provide inconclusive evidence on the presence of innate host

preferences [5,8,13–19].

In the United States, West Nile virus (WNV; family Flaviviridae,

genus Flavivirus) is maintained in a zoonotic cycle involving mosquito

vectors and wild birds serving as amplification hosts. Mammals,

including humans, are generally considered non-competent or

‘dilution’ hosts because they do not develop viremias of sufficient

magnitude and duration to infect mosquitoes and thus do not

contribute to the transmission cycle [20]. WNV was first recognized

in North America in 1999, and has since spread throughout the

United States and southern Canada, causing more than 28,900

human cases and 1,131 fatalities (Centers for Disease Control and

Prevention, 2008). In the northeastern US, the mosquito Culex

pipiens L. (Diptera: Culicidae) is considered an important enzootic

vector for WNV, as numerous isolations of WNV have been

obtained from field-collected mosquitoes [21–24] and laboratory

studies have confirmed its vector competence [25–27].

Recent studies in the northeastern US and elsewhere, have

found that a single host species, the American robin (Turdus

migratorius), provides between 5 and 71% of all C. pipiens blood

meals, with most reporting higher than 40% robin-derived blood

meals [28–35]. Kilpatrick et al [30] and Hamer et al [35] have

further shown that robins are fed upon by C. pipiens in excess of

what would be expected based on their relative abundance in the

host community, as determined by a feeding index .1. Field

derived feeding indices, also referred to as a ‘selection’ [35] or

‘forage’ [36] ratio, are, however, limited in their ability to

discriminate between an ‘innate’ feeding preference and the effect
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of landscape composition and configuration on the contact rate

between C. pipiens and robins.

The objective of this study was to obtain a measure of innate host-

selection in C. pipiens by comparing the relative attractiveness of

American robins when paired with two other bird species common

in residential areas, European starling (Sternus vulgaris) and house

sparrow (Passer domesticus), in outdoor caged experiments.

Materials and Methods

Mosquitoes
All C. pipiens mosquitoes used in the experimental host selection

trials were reared from field collected egg rafts obtained in New

Haven, CT between August 15 and September 29, 2008 using

gravid-trap bins baited with a lactalbumin and yeast hay infusion.

Egg rafts were collected daily and placed individually in 100615mm

Petri dishes filled with approximately 40ml purified water and a

small amount of crushed flake fish food, at 70% relative humidity.

Larval rearing was conducted at the Connecticut Agricultural

Experiment Station’s insectary located at Lockwood Farm in

Hamden, CT at 22uC under a 16 hr photoperiod. C. pipiens larvae

were readily identified to species during the second stadium using

standard morphological characters with the aid of a stereo

microscope and descriptive keys [37]. Three to 5 egg batches were

then transferred simultaneously to larger 30619cm pans filled with

100ml water for rearing to adulthood. Emerging adults were

maintained in 30.5630.5630.5cm screened cages under the same

relative humidity conditions and were provided with a 10% sucrose

solution. Adult female C. pipiens used in the host selection trials were

at least 4 days post-emergence and were deprived from the sucrose

solution for 24 hr prior to each trial.

Birds
All animal work was conducted in accordance with relevant

national and international guidelines by the US Geological Survey

(USGS) and the Ornithological Council. Necessary university

(IACUC 2006-07596), state (0109017) and federal (MB122969-2)

permits were obtained for this study to ensure appropriate care and

handling of birds. All birds were captured in New Haven County

using either mist-nets or starling traps (New Haven Troyer V-Top

Repeating Sparrow and Starling TrapH, #6057) and were sub-

sequently housed at the Yale Farm in Bethany, CT. Captured birds

were identified to species, given a unique identifier (robins were

banded) and classified by sex and age if possible. Birds were used in

only one trial, held for no more than 24 hours, and all birds were

successfully released the morning after the trial at the location of

capture.

Prior to trials, captured birds were held individually in 83.3 or

143.8 liter mesh reptarium cages supplied with paper liners in a

designated animal room at the Yale Farm at 24uC and 76.0% RH.

Perches made of sticks with faux foliage were provided and birds were

given unlimited water and ample food. Robins were provided

approximately 100 mealworms each, while other species were

provided wild bird seed. The room lights were left on, but cages

were covered with a light-colored sheet. In this manner, birds could not

see beyond their cage, but could still locate their perch, food and water.

Trials
The host selection trials were conducted with three different

species of birds, American robin, European starling, and house

sparrow outdoors in two 363 m mesh enclosures (Bioquip

Products, Inc; Rancho Dominguez, CA 90220) that were erected

in an open lawn area away from trees or other obstructions at the

Yale Farm in Bethany, CT (Figure 1). The enclosures were

mosquito-proofed on all sides by attaching a tarp floor and using

durable weather-resistant tape to seal all gaps. A small hole was cut

into the side of each enclosure for inserting mosquitoes, and was

then plugged to prevent mosquitoes from escaping.

Within each enclosure, two ‘‘lard-can’’ traps [17,38] baited with

a single bird were hung side-by-side separated by one meter. The

trap was designed so that mosquitoes could enter from either end

but were unable to exit, and contained a mesh screen separating

the bird from mosquitoes entering the trap.

The trials were conducted for a 2 hr interval after sunset

coincident with peak host-seeking activity reported for Cx pipiens

[39]. For each trial, one robin and one individual of an alternate

species (or a second robin as a control for trap selection bias) were

placed within the two lard-can traps. To minimize potential bias due

to trap placements, bird placement within the two traps (either left or

right trap) was randomized. A trial started as soon as 100–200 (exact

number counted for each trial) F1 female C. pipiens mosquitoes were

inserted into the enclosure. The start and end times were recorded

along with the date. Temperature, humidity, and wind speed

measurements were taken midway through the trial using a hand-

Figure 1. Trial Enclosure (A) and Bird-Baited Trap Design (B).
doi:10.1371/journal.pone.0007861.g001
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held weather meter (KestrelH 4000). Mosquitoes remaining in the

enclosure after the trial were aspirated using a back-pack aspirator,

after which the traps were dismantled, the birds returned to their

holding cages and mosquitoes in the collection chambers were frozen

and counted. Four American robin-European starling and eight

robin-house sparrow trials were conducted. We also ran eight robin-

robin pairings, which served as a control.

Data Analysis
We measured the relative attractiveness of robins over the

alternate bird species as the probability of a mosquito entering a

robin-baited trap (P(robin)) when paired with a trap baited with an

alternate bird species.

A logistic regression model was used to examine the effect of

covariates on the probability of a mosquito entering a robin-baited

trap (Stata/SE 8.0, Stata Co., College Station, TX). The

covariates were the alternate individual’s species weight, the

robin’s weight, the weight difference between the robin and the

alternate species, the age and sex of birds, the date of the trial,

starting-time, temperature, humidity, wind-speed and the age of

the mosquitoes.

C. pipiens’ propensity to engage in host-seeking behavior

(‘activation’) was measured as the proportion of mosquitoes that

entered either baited trap during each trial. Differences in

activation among pairings where assessed using a Chi-square test.

Results

Host-seeking C. pipiens were significantly more attracted to robins

than to either sparrows or starlings (Table 1), but no difference was

detected when trials were conducted with two robins (Additional

information for individual trials are provided in Supplementary

Tables S1–S3). C. pipiens were three times more likely to enter robin-

baited traps when paired with starling-baited traps (OR = 3.06; CI

[1.42–6.46]) and almost twice more likely when paired with

sparrow-baited traps (OR = 1.80; CI = [1.22–2.90]).

Multiple logistic regression analyses indicated that the robin’s

weight, alternate species’ weight, the weight difference between the

robin and the alternate species, the age and sex of the alternate

species, the date of the trial, starting-time, temperature, humidity,

wind-speed and the age of the mosquitoes had no effect on the

probability of a choosing a robin over an alternate bird.

Activation was 11.162.6% for robin-robin pairings (n = 8),

12.660.8% for robin-house sparrow pairings (n = 8), 6.761.8%

for robin-starling pairings, and 7.361.3% for two sparrow-sparrow

trials not included in regression analysis due to low sample size. The

overall percentage of total introduced mosquitoes entering a bird-

baited trap (mean activation) was 10.5% and was not significantly

different among the host-choice pairings (Chi-square = 5.51, 3df,

p = 0.14), indicating that C. pipiens activation did not influence

preferential host-selection in our study. A larger experiment with

more replicates would be helpful to confirm this finding.

Discussion

Our results indicate that C. pipiens display preference for robins

when offered a choice between a robin and one of two locally

common, sympatric bird species. The degree of preference varied

depending on the alternate species, with robins selected approx-

imately three times over European starlings and two times over

house sparrows. This preference was not affected by potential

confounders such as age of the mosquito cohort, birds’ weight, age

and sex and differences in body weight between the trial pair and

the environmental conditions (temperature, relative humidity and

wind speed) in which trials were held. Furthermore no location bias

in trap selection was indicated by the equal probability of

mosquitoes entering either trap when both were baited with robins.

The only covariate which significantly influenced host choice was

the species with which the robin was paired. We acknowledge that

the current investigation evaluated the attractiveness of three avian

species only, and that further experiments with larger numbers will

need to be conducted to determine whether a preference for robins

is maintained when paired with other common Passeriform species

upon which C. pipiens is known to feed.

The preference of C. pipiens for robins over both European

starlings and house sparrows is consistent with studies reporting

C. pipiens’ feeding patterns in the field. Apperson et al [29] reported

that although all three birds were among the most abundant species

in New Jersey and Tennessee, robins were a common blood source

for C. pipiens, while house sparrows were only rarely fed upon and no

blood meals were identified from European starlings. Feeding

indices calculated from blood meal analyses coupled with estimates

of the relative abundance of avian species within the local

community [30,35] also suggest that C. pipiens preferentially feed

on robins. In a study in Maryland, Kilpatrick et al [30] concluded

that robins were fed upon 16.464.4 (range 6.4–30.6) times more

often than would be expected based upon their abundance. In a

Chicago, Illinois, study, Hamer et al [35] also found that robins

were fed upon more often than their abundance would predict

(index 2.2660.39), while both European starlings and house

sparrows were less often fed upon (indices 0.3960.17 and

0.3260.05, respectively). High spatial and temporal variability has

been reported in field-derived feeding indices, and this may be

expected because interactions with complex biotic and abiotic

factors in nature modulate the mosquitoes’ innate host preferences.

To measure ‘innate’ host-preference by C. pipiens, our experi-

mental design used two host-baited traps within a large enclosure to

minimize the effect of confounding factors which are often

associated with olfactometer and field-based trials. Experiments

using laboratory olfactometers or wind-tunnel designs have demon-

strated mosquito host-preferences (Aedes aegypti L. [40], Anopheles

quadriannulatus Theobald [41,42], and reviewed in [43]), but these

designs do not represent host-seeking conditions in nature because

they often use artificial airstreams, colony-reared mosquitoes, and/

or partial host stimuli. In contrast, studies conducted in the field

Table 1. Results of C. pipiens host-choice trials.

Pairing n trials total C. (range/trial) % activation P(robin)* OR (95% CI)** p value

robin - sparrow 8 1528 (160–208) 12.6860.83 0.6660.04 1.80 (1.22–2.90) 0.004

robin - starling 4 710 (145–200) 6.7361.80 0.7660.07 3.06 (1.42–6.46) 0.003

robin - robin 8 1400 (100–200) 11.1262.60 0.4760.06 0.08 (0.59–1.08) .0.15

*shows the probability a mosquito enters the robin-baited trap, or the left trap for robin-robin pairings.
**adjusted odds ratios with corresponding 95% confidence intervals.
doi:10.1371/journal.pone.0007861.t001
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using host-baited traps (Anopheles gambiae s.s. Giles [12], An. gambiae

s.l. and An. pharoensis Theobald, [8], Culex quinquefasciatus Say[15],

Culex nigripalpus Theobald [16]) represent natural conditions but

cannot control for mosquito densities or account for the presence of

other competing hosts.

Our design further provided a measure of host preference, as

opposed to measuring feeding success, which may be affected by

birds’ defensive behaviors which may reduce mosquito feeding

success [13,18,44–46]. It has been documented that starlings will

engage in defensive movements or will eat mosquitoes to avoid

being bitten [47], and that such behaviors cause biting mosquitoes

to divert to more permissive hosts [44]. In our trials, mosquitoes

that entered the trap were separated from the bird by a mesh

screen.

The 10.5% activation level for C. pipiens observed in our study

was within the lower ranges reported in olfactometer studies with

An. gambiae s.s. (9 to 19%) [12], and An. quadriannulatus (10 to 28%)

[45]. Lower activation was most likely due to the absence of

artificial airstreams used to induce mosquitoes to engage in

appetitive flight.

Innate host preference by C. pipiens for particular host species has

epidemiological relevance in that preferential feeding by C. pipiens on

WNV-competent hosts, such as robins, may influence transmission

dynamics if contact rates are shifted away from other abundant, but

less competent hosts. From the experiments conducted herein, we

can derive a potential preference index for C. pipiens that can be

included in epidemiological models describing WNV enzootic

transmission to determine its influence on the dynamics. Current

models of WNV enzootic transmission include parameters describ-

ing the host community; however, they do not adequately

incorporate vector feeding preferences [48–53]. Another parameter

measured in this experiment that can be used to inform

epidemiological models is the activation level, which provides an

estimate of the field-deployed mosquito traps’ recruitment rate.

Finally, estimating innate host preference offers additional benefits to

epidemiological studies of vector-host interactions. By providing a

fixed estimate of the innate feeding preference, this study allows

evaluation of the relative influence of other biotic and abiotic factors.

Such comparisons may provide insights into how the environment

acts to modulate the innate host preference of vectors.

Supporting Information

Table S1 Results for individual robin and house sparrow trials.

Found at: doi:10.1371/journal.pone.0007861.s001 (0.04 MB

DOC)

Table S2 Results of robin and starling trials.

Found at: doi:10.1371/journal.pone.0007861.s002 (0.03 MB

DOC)

Table S3 Results of the robin and robin control trials.

Found at: doi:10.1371/journal.pone.0007861.s003 (0.04 MB

DOC)
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