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Summary 
The authors developed a monitoring and risk 
mapping system using normalized difference 
vegetation index (NDVI) times series data 
derived from the advanced very high 
resolution radiometer (AVHRR) instrument on 
polar orbiting national oceanographic and 
atmospheric administration (NOAA) satellites 
to map areas with a potential for a Rift Valley 
fever (RVF) outbreaks in sub-Saharan Africa. 
This system is potentially an important tool for 
local, national and international organisations 
involved in the prevention and control of 
animal and human disease, permitting focused 
and timely implementation of disease control 

strategies several months before an outbreak. 
We are currently developing a geographic 
information system (GIS)-based remotely 
sensed early warning system for potential RVF 
vectors in the United States. Forecasts of the 
potential emergence of mosquito vectors will 
be disseminated throughout the United States, 
providing several months’ warning in advance 
of potentially elevated mosquito populations. 
This would allow timely, targeted 
implementation of mosquito control, animal 
quarantine and vaccine strategies to reduce or 
prevent animal and human disease. 
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Un sistema di sorveglianza sul 
rischio di insorgenza della 
febbre della Valle del Rift per 
l’Africa costruito mediante dati 
di telerilevamento: uso 
potenziale in altri continenti 
Riassunto 
Gli autori sviluppano un sistema di monitoraggio e 
mappatura del rischio utilizzando serie di dati 
temporali derivanti dalle differenze dell’indice 
normalizzato di vegetazione (NDVI) forniti dai 
radiometri e dagli strumenti ad altissima 
risoluzione presenti sui satelliti orbitanti sull’orbita 
polare appartenenti all’ufficio nazionale per 
l’oceanografia e lo studio dell’atmosfera (NOAA) 
con l’obiettivo di costruire mappe che identificano 
potenziali aree di insorgenza di focolai di febbre 
della valle del Rift nell’Africa sub-sahariana. 
Questo sistema è potenzialmente un importante 
strumento per le organizzazioni locali, nazionali ed 
internazionali coinvolte nella prevenzione e nel 
controllo delle malattie umane ed animali poiché 
permette di implementare le strategie di controllo in 
maniera tempestiva e focalizzata già alcuni mesi 
prima dell’insorgenza di un focolaio. Attualmente 
si sta sviluppando un sistema di allerta rapido basto 
su un sistema informativo geografico per i 
potenziali vettori della febbre della valle del Rift 
negli Stati Uniti. Questo sistema è in grado di 
fornire previsioni sulla potenziale emergenza di 
specie di zanzare vettori su tutto il territorio degli 
Stati Uniti, allertando con molti mesi di anticipo le 
autorità competenti sui potenziali incrementi di 
popolazione delle zanzare. Ciò dovrebbe consentire 
l’implementazione tempestiva e mirata dei sistemi 
di controllo delle zanzare, di quarantena per gli 
animali e delle strategie vaccinali al fine di 
prevenire l’insorgenza di patologie sia nell’uomo sia 
negli animali nonché di limitarne la diffusione. 

Parole chiave 
Africa, Allerta precoce, Febbre della valle del 
Rift, implementazione targettizzata, Sistema 
informativo geografico, Sorveglianza globale, 
Stati Uniti d’America, Zanzare vettori. 

Introduction 
Rift Valley fever (RVF) is a mosquito-borne 
viral disease with pronounced health and 
economic impacts in domestic animal and 
human populations in much of sub-Saharan 
Africa (15). The disease causes high mortality 
and abortion in domestic animals and 
morbidity (ranging from fever to ocular, 
meningoencephalitis, and haemorrhagic 
disease) and mortality (case mortality rate of 
0.2-5%) in humans. RVF epizootics and 
epidemics are closely linked to the occurrence 
of the warm phase of the El Niño/Southern 
Oscillation (ENSO) phenomenon (13). We have 
developed a monitoring and risk mapping 
system − using normalized difference 
vegetation index (NDVI) times series data 
derived from the advanced very high 
resolution radiometer (AVHRR) instrument on 
polar orbiting National Oceanographic and 
Atmospheric Administration (NOAA) satellites 
− to map areas with a potential for a RVF 
outbreak (1). This forecasting system operates 
in near-real time with a three-month lead to 
predict monthly RVF risk (3, 13). It offers an 
opportunity to identify eco-climatic conditions 
associated with disease outbreaks over a large 
area (24). This system is potentially an 
important tool for local, national and 
international organisations involved in the 
prevention and control of animal and human 
disease. It permits focused and timely 
implementation of disease control strategies 
several months in anticipation of an outbreak. 
The RVF outbreak on the west coast of the 
Arabian Peninsula in 2000 demonstrated that 
regions other than those in sub-Saharan Africa 
might be at risk of RVF (6). The forecasting 
system developed for Africa has been 
modified to include the Arabian Peninsula, 
and can potentially be adapted to assess the 
risk of RVF and other arthropod-borne disease 
outbreaks in new ecological settings (2). 
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In order to enhance disease surveillance and 
forecasting, we are currently developing a 
geographic information system (GIS)-based 
early warning system for RVF vectors in the 
United States, based on the African model. 
Mosquito surveillance data collected by 
mosquito control and public health agencies, 
and climate data derived from satellite 
measurements and terrestrial weather stations, 
are being compiled in a GIS system for this 
task. Potential disease transmission patterns 
will be predicted, based on the quantitative 
relationship between the activity of potential 
RVF mosquito vectors and local and global 
climate indicators. Spatial and temporal 
statistics are used to evaluate associations 
between climate and predicted mosquito 
densities. Risk maps will be generated to 
inform vector control agencies. These will be 
disseminated throughout the United States, 
providing several months warning before 
conditions are suitable for elevated 
populations of potential RVF mosquito 
vectors. This will permit timely, targeted 
implementation of mosquito control, animal 
quarantine and vaccine strategies to reduce or 
prevent animal and human disease, should 
RVF virus enter the United States. The 
infrastructure and systems we develop in 
preparation for RVF can be laterally 
transferred to inform strategies against any 
other introduced mosquito-borne disease 
threats. 

Methods 
Identification of geographic areas at risk of 
RVF outbreaks is based on ecological 
interactions involving host animals, vector 
arthropods, the virus and the biological and 
physical environment. In developing our RVF 
risk model for Africa we considered the 
dynamics of mosquito species succession in 
flooded habitats (12). Next, we identified areas 
− where historic RVF outbreaks have occurred 
− with substantial interannual vegetation (as 
shown by NDVI) variability. Then we 
determined where in these areas there were 
persistent positive NDVI anomalies during the 
rainy season associated with above normal 
rainfall. We selected high-risk time periods 

based on sea surface temperature (SST) 
anomalies in region 3.4 of the equatorial 
eastern Pacific (NINO 3.4) and in the 
equatorial western Indian Ocean (WIO), 
representing El Niño and La Niña periods 
(Fig. 1). Finally, we evaluated how periods 
with significant above or below departures in 
SSTs correlate with above or below normal 
NDVI in East Africa. 
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Figure 1 
NINO 3.4 SST anomalies (red line) and WIO SST 
anomalies (blue line) SSTs elevated for 1982-
1983 corresponding to Rift Valley fever virus 
transmission in East Africa, elevated WIO SSTs 
(blue line) elevated for 1988-1989 
corresponding to localised RVF virus 
transmission in central Kenya and concurrent 
elevated NINO 3.4 (red line) and WIO (blue line) 
SSTs for 1997-1998 corresponding to extensive 
RVF virus transmission in East Africa 

We used the following procedures to identify 
regions at elevated risk of a RVF outbreak (1): 
 Create a long-term NDVI based climatology 
describing vegetation patterns for the entire 
African continent, at an 8 km spatial 
resolution, by calculating the mean NDVI for 
July 1981 to July 2000 (22). 

 Develop a map of savannah complexes in 
Africa with a mean NDVI value between 0.15 
and 0.40, corresponding to a mean yearly 
rainfall of 200-800 mm. These are primarily 
the regions where RVF outbreaks have been 
described (17). This product (a savannah 
mask) omits tropical forest, desert and some 
wet savannah areas, such as northern 
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Zambia, and has been adjusted to include 
areas in the Nile River Valley and the 
Arabian Peninsula where RVF expanded its 
range in 1977 (17) and 2000 (6), respectively. 
This savannah mask includes areas that are 
likely to have RVF epizootics/epidemics. 

 Calculate NDVI monthly anomalies, 
expressed and mapped as percent deviation 
of monthly values from the long-term mean 
value for each pixel in the savannah mask of 
continental Africa. 

 Define areas at risk of RVF. Risk is defined as 
a persistent positive anomaly >0.025 NDVI 
units for any three consecutive months for 
any pixel within the savannah mask. Then 
identify all pixels with a mean monthly 
positive anomaly exceeding 0.1 NDVI units, 
a value observed in East Africa during the 
1997-1998 RVF epizootic (13). 

 Calculate frequency statistics on the number 
of RVF risk pixels. The savannah mask is 
divided into three regions (East Africa, South 
Africa and the Sahel) for analysis and data 
are expressed as a continuous three-month 
rolling average for all months (1). The results 
for the different periods show the highest 
risk by area coverage. A total of 
164 850 pixels, representing 10 550 400 km2, 
are included in the savannah mask. 

Results and discussion 

Current Rift Valley fever risk 
assessment system in Africa 
Risk maps are generated and are interpreted in 
relation to interannual variability patterns in 
SST anomalies in the WIO and NINO 3.4 
regions. RVF risk results are presented as 
binary images. Areas flagged as red within the 
savannah mask represent elevated risk for RVF 
for that period of time (Fig. 2). Areas shown in 
green are within the RVF endemic mask and 
show reduced risk. Other areas (shown in 
yellow), desert and dense tropical forest are 
not included in the analysis. 
In East Africa, the RVF risk model 
retrospectively detected the last three RVF 
outbreaks in 1982-1983, 1989 and 1997-1998, 
and each of these events was correlated to 
positive SST anomalies. The 1982-1983 

outbreak corresponded to a warm ENSO event 
with peak positive anomalies in the NINO 3.4 
and WIO regions of 3.0 and 0.8°C, respectively 
(Fig. 1). Positive NDVI anomalies persisted for 
several months and covered most of the semi-
arid lands of East Africa (Fig. 2). 

 
Figure 2 
Rift Valley fever risk map, November 1982 to 
January 1983 
Elevated RVF risk depicted in red for much of East 
Africa was convergent with a RVF epizootic in Kenya 
during this period 

In 1988-1989, warm SST conditions prevailed 
in the WIO region but the NINO 3.4 changed 
to cold conditions (Fig. 1). Positive NDVI 
anomalies persisted in southern African and 
East Africa. We identified areas of potential 
RVF risk in north-west Kenya extending to the 
central Rift Valley region around Lakes 
Nakuru and Naivasha in Kenya, and other 
areas of South Africa (Fig. 3). Localised RVF 
activity in mosquitoes, domestic animals and 
humans was detected in the area around Lake 
Naivasha, Kenya (14). 
Warming SST conditions commenced during 
May 1997 in both the WIO and NINO 3.4, 
reaching a peak of 1.2°C in the WIO and 4.0°C 
in the NINO 3.4 (Fig. 1). Large areas of East 
Africa received widespread and heavy rainfall 
during the short rainy season (September to 
November 1997) and this rainfall extended into 
the dry season (December 1997 to February 
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1998). Significantly elevated NDVI values 
occurred in much of East Africa. This led to an 
increased risk of RVF transmission over an 
area of 1 280 000 km2, including Kenya, 
Somalia, Tanzania, Sudan, Uganda and parts 
of Ethiopia (Fig. 4). The largest RVF outbreak 
in the last 20 years occurred during this period 
over the same area identified to be at risk (5). 

 
Figure 3 
Rift Valley fever risk map for September to 
November 1988 showing elevated risk in Kenya 
where a limited RVF epizootic/epidemic 
occurred near Lake Naivasha 

In the Sahel, the largest RVF outbreak in 
Senegal and Mauritania was detected in 1987; 
however, limited RVF activity in Senegal in 
1993, Burkina Faso in 1983 and the Central 
African Republic in 1985 was not detected. In 
southern Africa, elevated RVF activity was 
detected in Zambia in 1985-1986 but RVF 
activity between 1982 and 1985 was variable. 
The initial stages of the RVF outbreak in 
Madagascar in 1992 were detected. 
Currently (November 2006), positive NDVI 
anomalies 40-60% above normal in East Africa 
indicate heavy rainfall (Fig. 5). Elevated risk of 
RVF activity is noted in Somalia in East Africa 
and in Namibia and Botswana in southern 
Africa (Fig. 6). It has been 10 years since the 
1997-1998 RVF outbreak in East Africa and 
current elevated rainfall, NDVI and RVF risk 
suggest that if current conditions persist there 

is a high likelihood of another RVF outbreak. 
We provided the forecast for this outbreak in 
October and November 2006 (3). 

 
Figure 4 
Rift Valley fever risk map, December 1997 to 
February 1998 
Elevated RVF risk is depicted in red for much of East 
Africa 
The largest RVF outbreak in the last 20 years occurred 
during this period covering a large geographic area 
(1 280 000 km2) of East Africa 

 

Figure 5 
Normalized difference vegetation index 
anomalies for November 2006 depicting 
favourable ecological conditions for mosquito 
breeding, associated with elevated rainfall in 
much of East Africa 
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The RVF risk model uses population dynamics 
of mosquito vectors and eco-climatic indicators 
to reconstruct likely historical patterns of RVF 
outbreaks and monitor eco-climatic conditions 
associated with disease outbreaks over large 
areas with satellite measurements (2). Disease 
mapping might provide public health 
authorities with information with which to 
target disease surveillance and control teams. 
Targeted response increases efficacy and 
minimises the cost of surveillance over large 
areas. 

 

Figure 6 
Rift Valley fever risk potential map, November 
2006 
Elevated RVF risk is depicted in red in Somalia, 
northern Kenya and Namibia, Botswana and South 
Africa 

Development of a risk assessment 
system for potential introduction of 
Rift Valley fever into the United 
States 
The documented expansion on RVF range 
beyond sub-Saharan Africa into Egypt in 1977 
(17) and, more recently, the emergence of the 
disease in Saudi Arabia and Yemen in 2000 (6) 
makes RVF a possible candidate for further 
globalisation. Similar to the introduction of 
West Nile virus (WNV) into the United States 
in 1999, an introduction of RVF into the United 

States would pose a substantial risk to 
humans, domestic animals and wildlife 
populations. RVF would also present 
significant effects on the agricultural and 
public health communities. The effect on the 
United States economy, including livestock 
feed suppliers, health care insurance, the food-
service industry and loss of confidence in the 
food supply, would be substantial. The bovine 
spongiform encephalopathy (BSE) outbreak in 
the United Kingdom in 1986 cost the European 
Union more than US$100 billion. The United 
States had beef-related exports in 2003 of 
US$5.7 billion. Additionally, the World 
Organisation for Animal Health (OIE: Office 
International des Épizooties) imposes a four-
year trade ban on any country with confirmed 
RVF transmission and the ban is lifted only 
after a country is disease-free for six months. It 
is important to now consider methods for 
adapting the RVF risk mapping methodologies 
developed for Africa to other regions of the 
world. Below we describe the process being 
developed in the United States. 

The United States early warning 
system for potential mosquito vectors 
of Rift Valley fever 
The rapid spread of WNV showed how 
rapidly an exotic arbovirus could establish in 
the United States, yet demonstrated our 
capacity to respond with improved public 
health, vector/virus surveillance and control, 
agency coordination and public education. 
However, there is more that can be done with 
respect to mosquito vector surveillance in the 
United States and we are developing a GIS-
based early warning system for potential 
vectors of RVF. In Africa, remotely sensed 
climate data are routinely and successfully 
used to flag areas at high risk of vector 
outbreaks and thus identify RVF epizootics at 
their earliest stage (1, 3, 13). We are developing 
a companion approach in the United States, 
but RVF is not present in the United States and 
there is no historical climate precedent for RVF 
outbreaks. We are instead looking at the 
predictive power of climate to inform us of 
population dynamics of potential RVF 
mosquito vectors. Population dynamics, such 
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as the timing, distribution and abundance of 
competent mosquito vectors, are critical factors 
in the risk of spread of an introduced 
mosquito-borne pathogen like RVF. Risk is 
compounded with biogeographic interactions 
of the pathogen, its vectors and susceptible 
human, livestock and wildlife populations. 
Our ability to predict the distribution, timing 
and abundance of a vector population hinges 
on unique biogeographic linkages between the 
species and its environment. A mosquito 
species in the United States, such as Aedes 
vexans, has an overall range estimated by a 
maximum polygon enclosing all observation 
points derived from field collections (8). This 
polygon is not an optimal representation of the 
environment’s temporal and spatial patchiness 
that drives distributions of organisms. The 
actual range is in fact a mosaic of patches 
environmentally appropriate for that species. 
The species can be thought of as divided into 
populations occupying these patches. The 
relationship between a mosquito species and 
its environment – based on snapshot 
measurements – are frequently used to 
provide a habitat suitability index from which 
predictions of future distributions can be made 
(9, 11, 21). However, analysis of long-term 
climate-species relationships may be more 
powerful. The relative success of a mosquito 
population over a long-term period of climate 
variation will give a better picture of the full 
range of climate conditions in which a species 
may survive (4, 7, 10, 16). We are looking at 
this relationship with long-term mosquito 
population data and long-term climate data. 

Mosquito population data 
We have compiled long-term population data 
from mosquito surveillance records gathered 
from mosquito and vector control districts 
(MVCDs) and state public health agencies 
throughout the United States. This database is 
a record of historical patterns of mosquito 
species abundance. Although mosquito 
population samples are collected from an array 
of trap types which may sample different 
elements of mosquito communities, traps are 
often placed in consistent locations and many 
have produced data for periods of years to 

decades to half centuries. Population data for a 
species are normalized in a monthly index of 
the mean number of females collected per trap 
per night, since MVCDs may trap over 
different time spans in a month. In the GIS, 
plotted trap location points are linked via 
attribute tables to the long-term mosquito 
surveillance database. For the species of 
interest, data are combined from all traps to 
create a unique distribution map for a given 
period of time. The majority of trap data we 
are evaluating are from Florida, but we have 
compiled data from several regions around the 
United States to represent a variety of 
ecological regions: the north-west 
(Washington, Oregon, Montana), north-central 
(Minnesota, Michigan), the north-east 
(Connecticut, New Jersey), and the south-east 
(Florida, Georgia, Louisiana). We have also 
included data gathered from mosquito 
surveillance across continental United States 
(CONUS) military bases by the United States 
Army Center for Health Promotion and 
Preventive Medicine (USACHPPM). Military 
bases may be ecological islands amid rapidly 
changing landscapes and may provide unique 
insight into climate-mosquito population 
dynamics, particularly when compared to 
adjacent civilian trap data. For instance, an 
outbreak of RVF could easily spread into 
neighbouring urban or rural areas from 
military installations and it will be a strategic 
advantage to have an understanding of 
mosquito population dynamics in either 
environment. 

Climate data 
For more than 25 years, NOAA has maintained 
satellites that gather United States climate 
data, providing information on climate for the 
entire life span of the majority of mosquito 
traps in the United States. NOAA climate data, 
such as NDVI gathered by AVHRR satellites 
(18, 19, 23), provide detailed global coverage in 
georeferenced raster format suitable for GIS. 
NDVI is particularly useful for landscape level 
study of populations since the index captures 
the combined effects of temperature, humidity, 
insolation, elevation, soils and precipitation. 
Figure 7 depicts NDVI values for North 
America in June 2005. Extensive greening of 
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most of North America is observed. The 
coupling of climate and vegetation dynamics 
enables a single ‘greenness’ index to be used 
 

 
Figure 7 
Normalized difference vegetation index for 
North America, June 2005 showing the 
increased green coverage of vegetation over 
the continent during early summer 

for multiple analyses between populations and 
component parameters which otherwise may 
on their own be misleading. By examining 
monthly NDVI anomalies compared to 25 year 
means, we can quantitatively describe the 
greenness of the landscape and the probability 
of mosquito populations surviving. Figure 8 
depicts NDVI anomalies for North America in 
June 2005. Positive vegetation anomalies are 
observed in northern Nevada and in a band 
extending from New Mexico to Canada just 
east of the continental divide. The 8 km2 NDVI 
raster cells blur some landscape heterogeneity 
and mosquito traps sample small areas within 
those cells. However, if climate-population 
associations emerge from coarse analyses we 
will use them as a guide to pursue climate-
population relationships at progressively finer 
scales. In addition, since species are sampled at 
multiple locations, and NDVI anomaly values 
vary among locations, we have the 
opportunity to examine population-NDVI 
relationships within a time period, as well as at 
single locations across multiple time periods. 
NOAA has also cultivated a terrestrial 
nationwide network of cooperative climate 

reporting stations with data up to 100 years 
old. We may interpolate precipitation or 
temperature data from terrestrial stations to 
estimate climate at trap sites where pre-
satellite era mosquito population data exist, 
and in many cases MVCDs capture their own 
rainfall data at trap sites. 

 
Figure 8 
Normalized difference vegetation index 
anomalies in North America for June 2005 
showing above normal vegetation conditions 
over western United States 
Anomalies are computed with respect to the 1981-
2003 mean period 

Approach 
Our first task is to link changes in 
environmental parameters with changes in 
vector populations subject to those parameters. 
Using geographic information technology we 
are looking for these links at two spatial scales. 
The first analysis looks at coarse, regional 
associations between population changes and 
a single climate parameter measured by 
satellite remote sensing; the second analysis 
examines fine scale associations between 
temporal variation of populations at sample 
locations and environmental parameters at 
those locations. Both analyses are facilitated by 
using a GIS computerised mapping platform 
for storage, editing, display and temporal-
spatial statistical analysis of all population and 
environmental data. By looking at long-term 
historical relationships between changes in 
climate and changes in mosquito populations, 
we will identify environmental factors such as 
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temperature and precipitation that can be used 
to predict the population dynamics of a 
mosquito species. Specifically, our objective is 
to build a model that predicts when and where 
environmental conditions are favourable for 
the emergence of unusually large mosquito 
populations. Given that more mosquitoes can 
increase the risk of dispersal of mosquito-
borne pathogens like RVF in humans, livestock 
and wildlife, these environmentally-based 
spatial and temporal predictions will drive 
disease risk maps. If particular climate patterns 
precede mosquito population changes, an 
automated GIS and remote sensing system 
may track climate and provide early warning 
of areas at risk. This system is the vector early 
warning GIS (VEW-GIS). 

Coarse-scale climate-population 
analyses 
For a vector species of interest, data are pulled 
up from all traps to create a unique 
distribution-density map for a given month in 
the GIS. The GIS is used to calculate mean 
NDVI values for that month across all sample 
points from a population, and we plot those 
NDVI values with population densities. In 
tandem with NDVI values, we calculate 
anomaly NDVI values to provide a measure of 
positive or negative deviation from the 25-year 
mean value for that month. What follows is a 
simple qualitative analysis or a simple 
regression analysis of monthly climate-
population relationships spanning several 
years to determine whether relationships exist 
between increases in populations and increases 
in greenness or greenness anomalies. 
Alternatively, plots of population densities 
and NDVI anomalies could reveal patterns of 
lag between climate actions and population 
responses. If relationships do exist, we will 
examine finer scales of climate and habitat to 
pinpoint key features that best predict 
increases or decreases in a population. NDVI 
may be sufficient to flag areas at risk of 
elevated vector populations at a scale usable 
by mosquito control districts or national 
preparedness agencies. Alternatively, we may 
find little or no relationships with NDVI. In 
this case, other global climate indicators, such 
as the ENSO or finer detail indicators such as 

land use change, mosquito control practices, or 
even major land-falling hurricanes, could be 
examined. 

Fine-scale climate-population 
analyses 
We will use an ecological niche mapping 
approach to look at fine scale relationships 
between population sample locations, the 
species found there (type and abundance), and 
the unique set of environmental attributes that 
define that location using DesktopGARP (20) 
(genetic algorithm for rule-set production). 
With GARP we will create a temporal series of 
niche models for each species and with an 
iterative approach test whether the niche 
derived at one time period matches that 
derived at another. The greater number of 
temporal matches, the greater the confidence 
that a certain habitat niche – which includes 
climate as well as an array of landscape 
features – is greatly predictive of the presence 
(or possible presence) of a mosquito vector of 
concern. Niche models developed using long-
term analyses can be tested against randomly 
excluded data, or by restricting model 
parameters to conditions early in the data 
period to predict later known values, assessing 
our ability to tag areas at risk of elevated 
populations. Also by monitoring the landscape 
and flagging areas which evolve to possess the 
features of a species’ niche, we can identify 
areas that may potentially harbour invasive 
species or vectors that were previously rare or 
unrecorded. Future GIS analyses will also 
include climatic factors such as air temperature 
and degree-day statistics which can affect 
vector competence and vectorial capacity of 
potential mosquito vectors of RVF depending 
on the time and place of introduction of RVF in 
the United States. 

Spatial information product: how will 
the climate-population analyses be 
used? 
There are two components for strategic 
implementation of VEW-GIS in minimising the 
risk of RVF in the United States. 
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Component I, Prevention 
Effective prevention depends on monitoring 
the constellation of favourable conditions 
needed for RVF to enter the United States, as 
follows: 
 the climate and consequent magnitude of 
RVF activity in Africa 

 reports of RVF activity in Africa and 
worldwide, and trade and movement of 
people between the United States and Africa 

 the status of candidate vectors, as modelled 
by VEW-GIS 

 the status of likely vertebrate reservoirs at 
nodes of projected arrival pathways of RVF. 

Component II, Preparation 
Preparation is nested within preventive efforts. 
Effective preparation for response, should RVF 
be detected in the United States despite 
prevention, depends on the status of vectors 
when and where introduction takes place. The 
status of candidate RVF mosquito vectors can 
be assessed by a combination of current 
surveillance data from mosquito control 
districts and risk maps produced by VEW-GIS. 
By developing predictive risk models of where 
vectors could be at any given time in the 
United States, we can more efficiently target, 
mobilise and implement control and 
containment strategies should RVF actually be 
detected in the United States. 
At its core, the VEW-GIS automated system 
simply flags regions susceptible to unusually 
high densities of mosquito vectors. Ideally the 
products of the VEW-GIS should be part of 
larger surveillance systems, such as those 
outlined in the prevention and preparation 
components. But the VEW-GIS is operational 
on its own as a clearinghouse of United States 
mosquito vector data. Mosquito and vector 
control agencies already integrate data from 
mosquito population surveillance into daily 
activities at a local level, but our goal is to 
synthesise these data at a national level The 
VEW-GIS predictive index can be integrated 
into existing surveillance/control measures by 
MVCDs, or can alert public health 
communities or other stakeholders (e.g. cattle 
and sheep producers or wildlife health 
agencies) that they should take extra measures 
to protect themselves and their interests. Many 

states may not perform mosquito surveillance 
or typically be exposed to elevated populations 
of pathogen-carrying mosquitoes, but climate 
can change and new vectors and new 
pathogens may arrive. Spatially-specific 
recommendations allow limited resources to 
be distributed more effectively, for instance 
freeing some areas from unnecessary blanket 
precautions by spatially targeting vector 
control, distribution of vaccines and 
diagnostics and dissemination of information 
to stakeholders based on the status of 
mosquito populations. Since climate in the 
United States is linked to phenomena such as 
the ENSO, climate activity elsewhere in the 
world could be used to estimate risk indices 
months into the future and provide ample time 
for preparation and prevention across the 
United States. 

Conclusion 
Our current monitoring and risk mapping 
system – based on NDVI and SST data from 
AVHRR instruments on polar orbiting NOAA 
satellites – is effective in assessing the potential 
spatial and temporal distribution of RVF 
transmission in Africa, as demonstrated by 
having predicted the recent RVF outbreak. 
However, RVF has expanded its distribution 
beyond the African continent. To prepare for a 
potential introduction into the United States, 
we are developing a GIS/remotely sensed early 
warning system for RVF vectors in the United 
States using mosquito surveillance data 
collected by mosquito control and public 
health agencies, and climate data measured by 
satellites and terrestrial weather stations. The 
GIS predicts disease transmission patterns 
based on the quantitative relationship between 
mosquito activity and patterns of local and 
global climate. Linkages between climate and 
mosquito densities are evaluated with spatial 
and temporal statistics, generating risk maps 
to inform vector control agencies. Mosquito 
prediction information will be disseminated 
throughout the United States, providing 
several months warning before conditions are 
suitable for elevated mosquito populations, 
permitting targeted implementation of 
mosquito control, animal quarantine and 
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vaccine strategies in time to reduce or prevent 
animal and human disease. Many of the 
systems we develop in preparation for RVF 
can be laterally transferred to inform strategies 
against other mosquito-borne disease threats. 
Additionally, the methodologies that we are 
developing for RVF surveillance could be 
adapted for use in neighbouring countries in 
North America and elsewhere. 
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