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Abstract

Pathogens transmitted by ticks are the leading cause of arthropod-associated human diseases in the United
States and managing the risk of exposure to potentially infected ticks is of vital public health importance. A 3-
year integrated tick management program to control blacklegged ticks, Ixodes scapularis, the primary vector for
the pathogenic agents of Lyme disease, human anaplasmosis, and babesiosis, was implemented in the town
of Redding in southwestern Connecticut beginning in 2013. Combinations of white-tailed deer, Odocoileus
virginianus, reduction, area application of the entomopathogenic fungus Metarhizium anisopliae, and fipronil-
based rodent bait boxes were evaluated for their ability to reduce nymphal 1. scapularis over 3 years. Inter-
ference from local hunters prevented sufficient, sustained deer removal previously reported to negatively impact
L. scapularis abundances (i.e., <5 deer/kmz). The combination of fipronil-based bait boxes and broadcast
application of M. anisopliae had the most impact of any treatment combination; questing nymphs were reduced
78-95% within each year and Borrelia burgdorferi-infected questing nymphal I. scapularis encounter potential
was reduced by 66% as compared with no treatment in the third year of the study. A combination of the
broadcast application of M. anisopliae and small rodent-targeted fipronil-based bait boxes is an effective low-
toxicity integrated approach that significantly reduced encounters with B. burgdorferi-infected questing nym-
phal 1. scapularis on individual properties.

Keywords: Borrelia burgdorferi, fipronil-based bait box, integrated tick management, Lyme disease, Metarhizium
anisopliae, Odocoileus virginianus.

Introduction burgdorferi, the causative pathogen of LD, as well as path-
ogens causing human granulocytic anaplasmosis, Anaplasma
LYME DISEASE (LD) is the most prevalent arthropod- phagocytophilum, babesiosis, Babesia microti, hard tick re-
associated disease in the United States. Although nearly lapsing fever, Borrelia miyamotoi, and the Powassan virus
30,000 human disease cases are reported annually, recent (Ebel 2010).
estimates by the Centers for Disease Control and Prevention Managing the risk of exposure to potentially infected
suggest that greater than 300,000 cases occur each year I scapularis has traditionally relied upon prevention through
(Centers for Disease Control and Prevention 2015). In 2015, the use of personal protective measures and implementat-
95% of reported LD cases were from 14 states: Connecticut, ion of methods to control tick abundance. These measures
Delaware, Maine, Maryland, Massachusetts, Minnesota, include area-wide application of natural and synthetic com-
New Hampshire, New Jersey, New York, Pennsylvania, pounds, vegetation management, and landscape modifica-
Rhode Island, Vermont, Virginia, and Wisconsin (Centers for  tions (Stafford and Kitron 2002, Williams et al. 2009,
Disease Control and Prevention 2016). In the United States, Williams and Ward 2010), host reduction or exclusion (Kil-
blacklegged ticks, Ixodes scapularis, occasionally referred to  patrick et al. 2014, Kugeler et al. 2016), host-targeted acar-
as deer ticks, are the primary vector that transmit Borrelia icides or vaccines (Telford et al. 2011, Gomes-Solecki 2014,
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Richer et al. 2014, Melo et al. 2016), and biological control
(Ginsberg and Stafford 2005, Piesman and Eisen 2008, Eisen
and Dolan 2016). Individual measures may be partially ef-
fective at reducing the abundance of ticks and prevalence of
associated pathogens, however, recent emphasis has been
given to the integration of a variety of methods within the
framework of integrated tick management (ITM) (Ginsberg
and Stafford 2005).

Currently, limited empirical data on the effectiveness of
integrated tick control methods are available. In an earlier
study, white-tailed deer, Odocoileus virginianus, exclusion,
vegetation management, and an acaricide application in
combination was found more effective in reducing the
abundance of the lone star tick, Amblyomma americanum,
compared with use of individual methods (Bloemer et al.
1990). In a more recent study, it was found that the combi-
nation of four-poster topical treatment devices (to target tick
infestations on deer), fipronil-based bait boxes, and applica-
tion of a pyrethroid acaricide reduced host-seeking nymphal
L. scapularis abundance by 86.6% and 94.3% after 1 and 2
years, respectively (Schulze et al. 2007). Although these
studies are foundational contributions to better understanding
ITM, clearly the current dearth of field-based studies is a
limiting factor for further development and application of
tick control measures. Furthermore, although application of
conventional acaricides has proven effective in some set-
tings, there is increasing interest in integrating compounds
with little to no environmental toxicity that have not been
fully explored to date (Regnault-Roger et al. 2012).

Earlier studies have shown that significant deer removal can
be effective in reducing I. scapularis abundance (Wilson et al.
1984, Stafford et al. 2003, Rand et al. 2004, Stafford 2007).
More recently, one study showed that deer reduction signifi-
cantly decreased the number of LD diagnoses in a residential
community (Kilpatrick et al. 2014). However, these studies
were conducted on islands or areas of an insular nature with
limited immigration and emigration of white-tailed deer. It
was our intent to determine if similar results could be achieved
in a noninsular setting as white-tailed deer have been shown to
be highly philopatric; deer typically will not vacate established
home ranges to occupy areas of lower density (McNulty et al.
1997, DeNicola and Williams 2008, Simard et al. 2013).

The present study examined the effectiveness of an ITM
approach based on minimally environmentally toxic com-
ponents in reducing the abundance of nymphal I. scapularis
in residential areas. The three components of the low-toxicity
integrated strategy included (1) white-tailed deer population
reduction (Stafford 1993, DeNicola et al. 2000, Kilpatrick
et al. 2014), (2) spray application of the entomopathogenic
fungus Metarhizium anisopliae (Bharadwaj and Stafford
2010, 2012, Stafford and Allan 2010), and (3) distribution of
fipronil-based rodent bait boxes (Dolan et al. 2004). The
objectives of this study were to (1) Develop an effective,
reduced-risk ITM approach, within a residential community
using an array of least toxic measures that are safe, inex-
pensive, and simple to implement. (2) Measure efficacy of
combined methods to reduce questing nymphal densities as
a means of reducing human exposure to B. burgdorferi. (3)
Determine if deer reduction alone and/or in combination with
other ITM interventions is an effective nymph reduction
strategy in a noninsular setting. (4) Determine the within-year
effectiveness of the M. anisopliae/fipronil-based rodent bait
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box treatment combination. We implemented the integrated
control measures and observed their combined effectiveness
within each year of implementation, during the period when
peaks in nymphal densities and risk of human exposure to
B. burgdorferi typically occur in this region (Stafford and
Magnarelli 1993, Bacon et al. 2008) over the course of the
study.

Materials and Methods
Study area and experimental design

This study was conducted from January 2013 through
September 2016, in the town of Redding, Connecticut
(41.3044°N, —73.3928°W). Redding encompasses 83 km? in
Fairfield County in southwestern CT, where LD has become
endemic. From 2009 through 2016, 8—18 human cases of LD
(87-197 cases/100,000 population) were reported annually in
Redding (Connecticut Department of Health 2017).

Experimental plots were distributed across residential
properties in four targeted 2.6 km? study sites. The four sites
were selected based on uniformity in size and landscape
characteristics. Considerations were made with respect to in-
tersite distances to minimize the possibility of deer movement
between study sites (Kilpatrick and Spohr 2000, Rhodes et al.
2010). Experimental plots within target sites were selected
based on the presence of woodland—lawn edge of at least 100
meters on the property, as well as accessibility and homeowner
participation. Average property size was ~2 ha.

Selected properties were utilized for inclusion in the study
based on homeowners’ permission to access their land. While
a few properties had shared boundaries, the majority were not
contiguous to one another. In 2013, access to five properties
was secured within one study site to receive the deer removal-
only treatment (deer removal). Elsewhere in town, six proper-
ties were secured to receive a combination of the broadcast
application of the M. anisopliae acaricide (Met52; Novozymes
Biologicals, Inc., Salem, VA) and distribution of fipronil-based
rodent bait boxes (Select TCS"; Tick Box Technology Cor-
poration, Norwalk, CT) (bait box/Met52). Additionally, four
properties were secured to receive all three interventions:
Met52, fipronil-based rodent bait boxes, and deer removal (deer
removal/bait box/Met52). Finally, six properties were used as
experimental controls and received no intervention (control).

In 2014, additional properties were added to each of the four
study sites: three were added to the deer removal treatment,
seven to bait box/Met52, one to deer removal/bait box/Met52,
and six to the control, increasing total properties from 21 in
2013 to 38 in 2014. The 21 properties were sampled and re-
ceived interventions in 2013, and all 38 properties were sam-
pled and received assigned interventions in 2014 and again in
2015. Met52 was not available in 2016 and as a result, was not
applied to assigned properties. That, and the fact that deer
removals ceased in early 2015 due to safety concerns resulted
in minimal intervention in 2016. As a result, the majority of
data presented are from 2013 to 2015. See Table 1 for treat-
ment assignments and number of participating properties.

Met52/ M. anisopliae

The active ingredient in Met52, M. anisopliae, is a naturally
occurring soil-borne fungus that causes green muscardine
disease in insects and has been shown to be pathogenic to
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TABLE 1. EXPERIMENTAL TREATMENT ASSIGNMENTS/YEAR

Year Treatment 1 Treatment 2 Treatment 3 Treatment 4

2013  Control (n=06) Deer removal (n=5) Fipronil bait box + Metarhizium  Deer removal + fipronil bait box +
anisopliae (n=06) M. anisopliae (n=4)

2014  Control (n=12) Deer removal (n=8) Fipronil bait box + Deer removal + fipronil bait box +
M. anisopliae (n=13) M. anisopliae (n=5)

2015 Control (n=12) Deer removal (n=8) Fipronil bait box + Deer removal + fipronil bait box +
M. anisopliae (n=13) M. anisopliae (n=15)

2016  Control (n=12) No treatment (n=8)  Fipronil bait box (n=13) Fipronil bait box (n=5)

Number of participating properties are in parentheses.

1. scapularis nymphs and adults in the laboratory (Zhioua et al.
1997, Benjamin et al. 2002, Kirkland et al. 2004, Bharadwaj
and Stafford 2012) and field settings (Bharadwaj and Stafford
2010). The deer removal/bait box/Met52 and bait box/Met52
properties received broadcast applications of Met52, which
contained 11% w/w of M. anisopliae or 5.5x10° CFU/g of
product, which was applied at a rate of 0.63-0.96 mL/m?,
twice per season in early June and July 2013, 2014, and 2015
or as dry weather conditions dictated. Each property was
sprayed by a licensed applicator (Connecticut Tick Control,
Norwalk, CT) within an area encompassing 3 meters on either
side of a woodland—lawn transect where drag sampling also
occurred (described below).

Fipronil-based bait boxes

The fipronil-based rodent bait boxes (Select TCS; Tick Box
Technology Corporation) targeted subadult 1. scapularis para-
sitizing small rodents. The boxes permitted free passage of
small rodents attracted to two nontoxic bait blocks on either side
of the rear of the box. A wick attached to the top of the box was
saturated with a 0.7% solution of a topical formulation of fi-
pronil, which small rodents entering the box were forced to
make contact with. A galvanized metal shroud prevented larger
mammals from gnawing through the plastic to access the bait.
The box/shroud combination was staked to the ground to pre-
vent movement or theft of boxes by medium-sized mammals.
The use of similar passive acaricide delivery devices was shown
to reduce nymphal and larval 1. scapularis parasitizing white-
footed mice, Peromyscus leucopus, the principal reservoir for
several pathogens, including B. burgdorferi, by 68% and 84%,
respectively, in field applications (Dolan et al. 2004). More
recently, similar fipronil-based bait boxes with doxycycline
hyclate-laden bait were shown to reduce nymphal I. scapularis
burdens on small rodents by 76% while reducing B. burgdorferi
infection in reservoir hosts by 96% (Dolan et al. 2016).

Bait boxes were distributed on plots approximately every
10 meters along property perimeters. In 2013 at the bait box/
Met52 treatment properties, 65 bait boxes were placed at the
6 properties and 47 were distributed at the 4 deer removal/bait
box/Met52 properties in May. All bait boxes were replaced
with new boxes midseason at each location. Boxes were re-
moved completely and inspected for usage and bait con-
sumption in early fall of 2013. In 2014, 2015, and 2016, 152
bait boxes were placed at the 13 bait box/Met52 properties
and 61 at the 5 deer removal/bait box/Met52 properties.
Those boxes also were replaced midseason and were re-
trieved in early fall. All rodent bait boxes showed signs of
heavy usage for all years of the study.

Deer removals

Deer were removed by professional sharpshooters (White
Buffalo, Inc., Moodus, CT) throughout the deer removal and the
deer removal/bait box/Met52 treatments as regulated hunting as
a management tool in noninsular suburban settings has yet to
achieve area-wide densities much below 17 deer/km? (Williams
et al. 2013). Deer were concentrated with bait on cooperat-
ing homeowners’ properties and euthanized with a single 0.223
caliber bullet to the center of the brain, consistent with the
American Veterinary Medical Association and Sikes and
Gannon (2011) standards for humane euthanasia and in com-
pliance with The Connecticut Agricultural Experiment Station’s
Institutional Animal Care and Use Committee (#P18-13) and
Connecticut Department of Energy and Environmental Protec-
tion (Volunteer Authorization #1315006b). All venison was
donated through local charities (WhiteTail Solutions, LLC,
Town of Redding Food Pantry, Bridgeport Rescue Mission).
Goal deer density sought for I. scapularis reduction was below
4.0 deer/km? on each of the two research areas.

Questing |. scapularis nymph sampling

Host-seeking, or questing 1. scapularis nymphs were sam-
pled from all participating properties from May to July in 2013,
2014, and 2015 by dragging vegetation with a tick drag con-
sisting of 1.0m?> of white cloth attached to a wooden dowel.
Follow-up drag sampling was done on the control and bait box/
Met52 properties in 2016. During each sampling session, we
dragged along permanent transects of known distance running
the length of woodland-lawn edge habitats. Drag sampling
occurred specifically along the lawn-side of the woodland—
lawn edge, the area that corresponds to peak density of questing
nymphal 1. scapularis in peridomestic habitats (Stafford and
Magnarelli 1993). All plots were sampled approximately every
2 weeks, and at the end of the study, density of sampled
questing nymphs (nymphs/100 m?) was determined for each
property within each treatment area. Nymphs were removed
from drags, transferred to labeled vials, and ultimately held in
humidity chambers at 4°C. We later confirmed species iden-
tities and life stages of all collected tick specimens and stored
them at —80°C for B. burgdorferi screening.

B. burgdorferi screening in questing
I. scapularis nymphs

Genomic DNA was extracted from field-collected ticks by
using the DNeasy Blood and Tissue Kit (Qiagen, Valencia,
CA) or DNAzol (Molecular Research Center, Cincinnati,
OH) according to the manufacturer’s recommendations, with
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some modifications (Molaei et al. 2006a, b). Briefly, ticks
were first washed three times in 500 uL sterilized, deionized
water, and homogenized in microtubes containing 400 uL
DNAzol manually or by using a copper BB and a vibration
mill. The homogenates were centrifuged at 14,000 g for
10 min. After adding 3 uL. of Polyacryl Carrier (Molecular
Research Center) to the supernatant, DNA was then precip-
itated by using absolute ethanol. The DNA pellet was washed
twice with 75% ethanol, air-dried briefly, reconstituted in
30 uL. of 1XTE buffer (10mM Tris-HCI [pH 8.0], 1 mM
EDTA), and stored at —20°C for further analysis. Isolated
DNA from the ticks served as templates in subsequent PCR
reactions to screen for infection with B. burgdorferi using
specific primer sets for flagellin (Barbour et al. 1996), the 16S
rRNA (Gazumyan et al. 1994), and Osp A (Persing et al.
1990) genes. DNA isolated from B. burgdorferi cultures and
from uninfected laboratory-reared ticks was used as positive
and negative controls, respectively, in all PCR reactions.
The Taq PCR Core Kit (Qiagen, Germantown, MD) was used
for all PCR reactions according to the manufacturer’s rec-
ommendation. A 50-uL reaction volume was prepared with
3 uL. template DNA, 4 ul. each primer (0.1-0.5 uM), 5 uLL
10x Qiagen PCR Buffer (containing 15mM MgCl2), 1 uL
dNTP mix (10mM each), 0.25 uL. Taqg DNA polymerase
(1.25 U/reaction), and 32.75 uLL water. PCR cycling condi-
tion for flab included an initial reaction activation step at
95°C for 3 min, followed by 40 cycles of denaturation at 95°C
for 1 min, annealing at 55°C for 1 min, and extension at 72°C
for 1 min. The final cycle was completed with 5 min of ex-
tension at 72°C. Cycling condition for 16S rRNA included an
initial reaction activation step at 95°C for 10 min, followed
by 35 cycles of denaturation at 95°C for 1 min, annealing at
54°C for 1 min, and extension at 72°C for 1 min and 20 s. The
final cycle was completed with 7 min of extension at 72°C.
Cycling condition for Osp A included an initial reaction ac-
tivation step at 94°C for 10 min, followed by 45 cycles of
denaturation at 95°C for 1 min, annealing at 50°C for 45s,
and extension at 72°C for 2 min. The final cycle was com-
pleted with 7min of extension at 72°C. All PCR reactions
were performed with Veriti or the GeneAmp PCR System
9700 (Applied Biosystems, Foster City, CA). PCR-amplified
products were run on 0.6—-1.2% agarose gel, stained with
ethidium bromide and visualized under UV light and docu-
mented using GelDoc system (UVP, Upland, CA).

Aerial deer counts over snow

We attempted a total count of all animals within each of the
four research areas using the double observer method, similar
to Beringer et al. (1998) as weather conditions permitted on
February 15, 2013, January 24, 2014, and March 3, 2015. We
used a Robinson 44 helicopter (Robinson Helicopter Com-
pany, Torrance, CA) with a pilot, two experienced observers
on either side of the rear of the aircraft, and a data recorder in
the copilot seat. We flew 200-m-wide transects that were pre-
established in the geographic information system program
ArcView (version 3.3; ESRI, Inc., Redlands, CA) and were
overlain on a GPS-ready, heads-up display moving map
software program (Geolink® Version 6.1; Michael Baker Jr.,
Inc., Shreveport, LA) on a digital aerial sketch mapper
(DASM; Dell Latitude XT2 XFR Hammerhead). The pilot
attempted to maintain an altitude of 60 meters and air speed
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of 40 km/h, although altitude and air speed varied somewhat
throughout the flights. Observers maintained a 100 meters
search area either side of the aircraft and communicated deer
sightings to the data recorder who entered their location and
abundance into the DASM in real time. The pilot navigated
from transects displayed on the DASM to insure full coverage
of each area. Snow varied in depth from 15cm in 2014 to
76.cm in 2015. Based on previous research using this tech-
nique and Beringer et al. (1998), we assumed that two ex-
perienced observers had 80% detection, but had to adjust
values in target areas with heavy coniferous or mountain
laurel, Kalmia latifolia, cover that was difficult to visually
penetrate from the air.

Statistical analyses

Nymphs were not encountered on 62% of sampling oc-
casions and as a result, data were severely non-normally
distributed and were unable to be normalized through stan-
dard data transformations. As a result, we used Pearson’s chi-
squared test for categorical data where sampling sizes were
large. We used Pearson’s chi-squared test with Yate’s cor-
rection for continuity in the B. burgdorferi-infected questing
nymph analysis, where there were small sample sizes (i.e.,
single-digit encounter data) for within-year comparisons. For
within years and for the combined 3 years, we used Pearson
to determine multiple pairwise differences in treatment
combinations for encountering at least one questing nymph
per sampling occasion, for encountering at least one B.
burgdorferi-infected questing nymph per sampling occasion,
and for B. burgdorferi infection prevalence in questing I.
scapularis. I. scapularis encounter data were deemed sig-
nificantly different at p <0.05.

We also calculated percent control (i.e., percent reduction
in questing nymphal density) associated with the within-year
bait box/Met52 treatment. We used mean density (nymphs/
100 m?) for 2—3 sampling occasions in early spring (late May
to early June) before the Met52 treatment was administered
(baseline) to compare 5—-6 nymphal sampling occasions post-
Met52 treatment through the end of July (summer) for each
of the 4 years at all locations. The formula used was: %
control = 100[1-(X_.Y)/(X;Y.)], where X. and X; are baseline
densities on control properties and bait box/Met52 properties,
respectively, and Y. and Y, are the summer densities from
the same respective plots (Henderson and Tilton 1955). We
calculated percent control on questing nymphs as well as B.
burgdorferi-infected questing nymphs using infection rates
derived from ticks tested each year for each property. We also
included data from 2016 to compare effectiveness of fipronil-
based bait boxes only without the integrated approach of
including the broadcast application of Met52. We used
comparable baseline and summer sampling dates for 2016 to
previous years as there was no application of Met52.

Results
Deer removals

Over 3 weeks in February to March 2013, 51 deer were
removed from the two study areas resulting in a 12.0 deer/
km? reduction of the deer removal only treatment (n=31) and
7.7 deer/km?® reduction at the deer removal/bait box/Met52
treatment (n=20). Results from the 2013 aerial survey
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TABLE 2. ToTAL NYMPHS AND MEAN DENsITY (/100 M2), INCLUDING STANDARD ERROR OF THE MEAN
OF QUESTING NYMPHAL IXODES SCAPULARIS SAMPLED FROM ALL TREATMENTS IN 2013, 2014, anD 2015
2013 2014 2015
Treatment area N Density N Density N Density
Control 68 1.0 (0.28) 28 0.3 (0.08) 80 1.0 (0.20)
Deer removal 68 1.8 (0.45) 37 0.7 (0.32) 32 0.6 (0.21)
Deer/bait box/Met52 26 0.7 (0.20) 16 0.4 (0.13) 8 0.3 (0.13)
Bait box/Met52 9 0.2 (0.08) 28 0.2 (0.06) 18 0.2 (0.05)

indicated that we were approaching goal densities. While
there were fewer deer in the deer removal/bait box/Met52
treatment area, dominated by a 113-ha piece of municipally
owned forested land, densities were likely double what we
sought. After initial reduction, local hunters intervened by
promoting a smear campaign of misinformation on the pro-
ject. As a result, the deer removal portion of the study was
severely compromised, had to be prematurely suspended in
2015 due to safety concerns, and goal densities were not
achieved. Despite this, 25 more deer were removed in 2014
resulting in a 4.2 deer/km” reduction from the deer removal
only treatment (n=11) and 5.4 deer/km? reduction from the
deer removal/bait box/Met52 treatment (n=14). Eleven deer
were removed in 2015 resulting in a 2.3 deer/km? reduction
from the deer removal only treatment (n=06) and 1.9 deer/
km? reduction from the deer removal/bait box/Met52 treat-
ment (n=>5). In our 2014 aerial survey, we reported initial
conservative densities of 14.7 deer/km? in the deer removal
only treatment and 7.3 deer/km? in the deer removal/bait box/
Met52 treatment. Despite seemingly approaching goal den-
sities, at least in the deer removal/bait box/Met52 treatment,
our final postremoval aerial snow count in March 2015 re-
sulted in 19.7 deer/km? in the deer removal only treatment
area and 6.2 deer/km? in the deer removal/bait box/Met52
treatment area, both above target densities of a sustained
annual 4.0 deer/km?. Despite not reaching goal densities, a

total of 87 deer were removed from the two 2.6 km? research
areas over 3 years, largely after the 4.5 month regulated
hunting season had expired.

I. scapularis questing nymph encounters

In 2013, each of the 21 cooperating properties were drag
sampled for nymphs on 10 different occasions, during sum-
mer months corresponding to peak nymphal activity (May to
July). This sampling effort resulted in 171 nymphs. In 2014,
the 38 properties were each sampled on nine different occa-
sions resulting in 109 nymphs collected. In 2015, the same 38
properties were sampled on eight occasions resulting in the
collection of 138 nymphs (Table 2).

In 2013, questing nymphal I. scapularis encounters were
significantly lower for the bait box/Met52 treatment as
compared with control ( X2 =6.3, p<0.01), deer removal only
(;{2 =8.4, p<0.01), and the deer removal/bait box/Met52
treatment (X2:7.3, p<0.01) (Fig. 1). In 2014, no signifi-
cant differences existed between any treatments (Fig. 1). In
2015, nymphal I. scapularis encounters were significantly
lower for the bait box/Met52 treatment as compared with
control (y*=12.3, p<0.001) and deer removal only treatment
(x*=4.1, p<0.03). Differences also existed between control
and the deer removal/bait box/Met52 (xz =3.0, p<0.05)
(Fig. 1). Combined results for all 3 years were also similar to
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TABLE 3. NUMBER OF I. SCAPULARIS NYMPHS TESTED (NYMPHS), NUMBER OF I. SCAPULARIS NYMPHS
THAT TESTED POSITIVE FOR BORRELIA BURGDORFERI (BB +), AND PERCENT INFECTED WITH B. BURGDORFERI (%)
FOR EACH TREATMENT AREA

2013 2014 2015
Area Nymphs Bb + % Nymphs Bb + % Nymphs Bb + %
Control 68 18 26 (A) 31 9 29 (A) 82 21 26 (A)
Deer removal 68 40 59 (B) 37 12 32 (A) 44 11 25 (A)
Deer/box/Met52 26 13 50 (B) 19 3 16 (A) 52 13 25 (A)
Box/Met52 9 0 0 (C) 48 8 17 (A) 43 7 16 (A)

Percent infection with the same letter is not significantly different within each year.

2013: nymphal I. scapularis encounters were significantly
lower for the bait box/Met52 treatment as compared with
control (;{2: 12.0, p<0.001), deer removal only (12: 13.3,
p<0.001), and the deer removal/bait box/Met52 treatment
(x*=7.8, p<0.01) (Fig. 1).

B. burgdorferi-infected questing nymph encounters

To increase sample size for evaluating infection preva-
lence only, 109 additional nymphs were sampled on partici-
pating properties in the different treatments areas, but were
off established transects. The prevalence of infection with
B. burgdorferi for all 418 on-transect and 109 off-transect
questing nymphs averaged 29% for all 3 years. Differences in
infection prevalence between treatments were not significant
in 2014 or 2015 (Table 3).

In 2013, deer removal resulted in the perceived increased
potential to encounter B. burgdorferi-infected questing
nymphs. The deer removal and deer removal/bait box/Met52
treatments showed the highest encounter potential and were
not significantly different (4*=0.1, p=0.6) and both were
significantly higher than control (y*=5.0, p<0.02, ¥*=3.8,
p<0.03, respectively) (Fig. 2). The bait box/Met52 treatment
had no infected nymphs, which was significantly lower than
for the deer removal only treatment (y*=17.7, p<0.001),

control (12=6.2, p<0.01), and the deer removal/bait box/
Met52 treatment (xz =15.9,p<0.001) (Fig. 2). In 2014, there
were no statistical differences between any treatment com-
binations (Fig. 2). In 2015, the bait box/Met52 treatment B.
burgdorferi-infected questing nymph encounter potential
was significantly lower than control (y*=5.6, p<0.01) and
the deer removal/bait box/Met52 treatment ( 12= 5.2,
p<0.02) (Fig. 2). Encounter potential for all 3 years com-
bined resulted in the bait box/Met52 treatment significantly
lower than the deer removal only treatment (y°=19.1,
p <0.001), control (Xz =6.4, p<0.01), and the deer removal/
bait box/Met52 treatment (y~=16.4, p<0.001) (Fig. 2). Ad-
ditionally, the deer removal only treatment encounter po-
tential with a B. burgdorferi-infected questing nymph was
significantly greater than control (y*=3.7, p <0.04) (Fig. 2).

Within-year M. anisopliae effectiveness

The combination of the application of M. anisopliae and
rodent bait box distribution was effective in significantly
reducing the total number of questing I. scapularis nymphs as
well as B. burgdorferi-infected questing I. scapularis nymphs
within each of the 3 years it was applied (Tables 4 and 5).
However, in 2016, the year M. anisopliae was not applied, the
distribution of rodent fipronil bait boxes alone was ineffective
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TABLE 4. MEAN DENSITY OF QUESTING I. SCAPULARIS
NywmpHs (/100 Mz) FOR PRE-MET52 TREATMENT
(BASELINE) AND POSTTREATMENT (SUMMER)

FOR CONTROL AND BAIT BOX/METS52 TREATMENTS
AND PERCENT EFFECTIVENESS

Year Treatment Baseline Summer % Effectiveness
2013 Control 0.27 1.69

2013 Bait box/Met52  0.60 0.20 95
2014 Control 0.31 0.46

2014 Bait box/Met52  0.55 0.02 97
2015 Control 1.34 1.06

2015 Bait box/Met52  0.36 0.06 78
2016 Control 1.14 0.59

2016 Bait box only 0.56 0.51 =77

at maintaining reduced density of both questing I. scapularis
nymphs and B. burgdorferi-infected questing 1. scapularis
nymphs (Tables 4 and 5).

Discussion

Results of this study indicate that an integrated strategy
involving a combination of a spray application of the en-
tomopathogenic fungus M. anisopliae and distribution of
fipronil-based rodent bait boxes provided the most effective
control of I. scapularis, the principal vector of B. burgdorferi
in North America (Piesman et al. 1987). Following 3 years of
intervention, this treatment combination proved to signifi-
cantly reduce both encounter potential with a questing nymph
(Fig. 1) and encounter potential with a B. burgdorferi-
infected nymph (Fig. 2) as compared with no treatment.
Previous studies also have reported on the effectiveness of
integrated control methods in reducing tick abundance
(Bloemer et al. 1990, Schulze et al. 2007); however, area-
wide application of synthetic acaricides was included in these
studies. Although many acaricides are considered to be rel-
atively safe for use in peridomestic habitats, their unintended
consequences for the environment and public health cannot
be entirely disregarded (Wargo 1996, Stafford 2007). By
contrast, the integrated control strategy implemented in this
study relies on an entomopathogenic fungus that occurs
naturally and has no known mammalian toxicity (Zimmer-
man 2007) and a low-dose host-targeted acaricide that is
frequently used as an antiparasitic treatment for domestic

TABLE 5. MEAN DENSITY OF B. BURGDORFERI-
INFECTED QUESTING 1. SCAPULARIS NYMPHS (/100 M2)
FOR PRE-MET52 TREATMENT (BASELINE)

AND POSTTREATMENT (SUMMER) FOR CONTROL
AND BAIT BOX/MET52 TREATMENTS
AND PERCENT EFFECTIVENESS

Year Treatment Baseline Summer % Effectiveness
2013 Control 0.046 0.491

2013 Bait box/Met52  0.063 0.010 99
2014 Control 0.128 0.189

2014 Bait box/Met52  0.176 0.010 96
2015 Control 0.382 0.265

2015 Bait box/Met52  0.146 0.024 76
2016 Control 0.089 0.050

2016 Bait box only 0.118 0.110 -67
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dogs and cats (Jacobson et al. 2004). It is thus a low-toxicity
alternative to the suite of integrated strategies shown to be
effective in controlling 1. scapularis.

In summer 2013, several months after significant deer re-
duction, questing B. burgdorferi-infected nymphal 1. scapu-
laris encounters at both the deer removal only treatment and
the deer removal/bait box/Met52 treatment were more than 2.5
times higher than control (Fig. 2). This temporary amplifica-
tion was likely the result of the acute removal of numerous
large-bodied, although, pathogenic dead-end hosts. Perkins
et al. (2006) documented similar amplification of questing 1.
scapularis in small areas (<2.5 ha), where deer were excluded,
although documented a reduction in questing 1. scapularis in
deer exclusion areas >2.5 ha. Similar amplification of questing
adult . scapularis was documented on Monhegan Island, ME
the same year deer were eliminated, but I. scapularis abun-
dance declined precipitously to insignificant densities over the
next 3 years in the absence of deer (Rand et al. 2004). Adult
female I. scapularis loads on deer were documented to in-
crease proportionally with the number of deer harvested in
coastal Massachusetts; as more deer were harvested, I. sca-
pularis load/deer increased (Deblinger et al. 1993), but ulti-
mately, after several years, I. scapularis abundances declined
significantly, following similar results as Wilson et al. (1984).

L. scapularis nymphs cause the majority of human cases of
LD, despite generally lower infection prevalence than adults
(Piesman and Spielman 1979, Piesman et al. 1986, Mather
et al. 1990, Kugeler et al. 2016). This phenomenon is due, in
part, to their small size and the fact that their peak activity
corresponds to the summer months when humans are most
active outdoors (Stafford 2007) and human LD cases are highly
correlated with the abundance of B. burgdorferi-infected I.
scapularis nymphs (Stafford et al. 1998). Approximately 95%
of adult female I. scapularis require deer for their final
bloodmeal (Wilson et al. 1990), but nymphs and larvae also
commonly feed on deer (Watson and Anderson 1976, Ander-
son and Magnarelli 1980, Magnarelli et al. 1995, Garnett et al.
2011). Itappears that deer as hosts for subadult I. scapularis has
been generally underreported and underappreciated in large
part due to the fact that deer are rarely sampled when subadult
L. scapularis stages are active; most handling of deer occurs
during hunting season (October to December) when only adult
I. scapularis are active (Stafford 2007). Deer are considered a
keystone host for adult female 1. scapularis and are reservoir
incompetent for the majority of tick-borne pathogens, partic-
ularly B. burgdorferi. Nevertheless, it is clear that deer are also
important hosts for subadult stages of I. scapularis. While this
temporary amplification phenomenon in the absence of deer
has been previously reported in adults (Rand et al. 2004, Per-
kins et al. 20006, Elias et al. 2011), we believe this is one of the
first reports to document it can also occur in nymphal 1. sca-
pularis populations as the result of initial deer reduction.

In 2013, both the deer removal/bait box/Met52 treatment
and deer removal only treatment, questing I. scapularis
nymphs were significantly higher, in fact double, for B.
burgdorferi infection than both control and the bait box/
Met52 treatment (Table 3) suggesting that in the absence of
the 51 reservoir incompetent deer that were removed, re-
maining I. scapularis prioritized bloodmeals from competent
reservoirs, specifically white-footed mice. Similar increases
in B. burgdorferi infection in adult I. scapularis (from 45%
to 75%) were documented on Monhegan Island, ME and



declined as deer were eliminated (Rand et al. 2004). After the
initial reduction in 2013, B. burgdorferi infection prevalence
in questing nymphs for all treatment areas did not differ
significantly in 2014 and 2015 (Table 3).

Despite an increase in cooperating homeowners from 21 to
38 in 2014, and an increased sampling effort, questing
nymphal 1. scapularis numbers declined considerably as
compared with 2013 (Table 2), particularly at the control
where there was no intervention. We can only assume this
drop was due to environmental factors and/or I. scapularis
intercycle variation. As a result, there were no detectable
significant differences between any treatment combination
for questing nymph or B. burgdorferi-infected questing
nymph encounters in 2014.

In 2015, questing I. scapularis sampling resulted in more
nymphs than in 2014, particularly at the control, the only area
where encounter potential increased. Only 11 deer were re-
moved from the deer removal only and the deer removal/bait
box/Met52 treatments combined in 2015, although questing
L. scapularis encounters continued downward trends from
2013 (Fig. 1). However, questing nymph and B. burgdorferi-
infected questing nymph encounters remained lowest at the
bait box/Met52 treatment. We attribute these results to the
sustained targeting of subadult 1. scapularis feeding on mice
by use of bait boxes and broadcast treatment of Met52. Ver-
tebrate host abundance was not manipulated at the bait box/
Met52 treatment and resulting temporary amplification from
host switching by subadult I. scapularis was not witnessed.
Additionally, this treatment combination provided excellent
control of questing nymphs and questing B. burgdorferi-
infected nymphs within each year from 2013 to 2015 at the bait
box/Met52 treatment (Tables 4 and 5), but in the absence of the
Met52 application in 2016, nymphal control was not main-
tained. We can only speculate why this occurred, but feel it
may be due, in part, to the treatment of single residential
properties scattered throughout the town. Because small ro-
dents are oblivious to human-derived boundary lines, fipronil-
based bait boxes are likely more effective when deployed in a
clustered or blanket approach, where multiple properties with
shared borders are treated (Dolan et al. 2004).

It was initially assumed that with increased interventions,
such as use of a combination of deer removal, bait boxes, and
Met52, we would witness increased reductions in B. burg-
dorferi infection and abundance of questing nymphs, but this
did not occur. This assumed achieving deer densities low
enough to negatively impact I. scapularis abundance over the
course of the study (Wilson et al. 1984, Stafford et al. 2003,
Rand et al. 2004, Stafford 2007). There are numerous studies
that document a positive correlation between 1. scapularis
and deer abundances, however, the majority have occurred in
areas of an insular nature with limited ingress and egress of
deer (Kugeler et al. 2016). While it was our intention to
further investigate and document this positive relationship in
a noninsular setting, ultimately, societal pressures through
direct interference from the local hunting community pre-
vented us from achieving a sustained low density of deer
needed to negatively impact 1. scapularis populations.

Conclusion

We were unable to determine if sufficient deer removal in
a noninsular setting is a viable I. scapularis management
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strategy. Encounter potential with a B. burgdorferi-infected
nymph remained similar for deer removal areas and the
control in year 3 of the study. Marginal deer removal efforts
after year 1 of this study likely resulted in subadult . sca-
pularis host switching and the subsequent temporary increase
in nymphal B. burgdorferi infection as previously docu-
mented (Deblinger et al. 1993, Rand et al. 2004, Perkins et al.
2006, Kugeler et al. 2016). Without the continued decline in
deer abundance, marginal deer removal in combination with
broadcast application of the entomopathogenic fungus M.
anisopliae and distribution of fipronil-based rodent bait-
boxes proved to be significantly less effective than the use of
M. anisopliae and bait boxes alone. Unfortunately, the effi-
cacy of deer reduction as a tick management strategy in
noninsular settings still remains unclear (Kugeler et al. 2016).
Unless there is sufficient public and political support to
commit to reducing deer densities to levels in the vicinity of
5/km?, individual homeowners looking for less toxic options
could use a strict regimen of a combination of broadcast
treatment of M. anisopliae and fipronil-based rodent bait
boxes to significantly reduce encounters with nymphal I
scapularis and associated B. burgdorferi on their properties.
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