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AtAzg1 and AtAzg2 comprise a novel family of purine transporters in Arabidopsis
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In plants, nucleobase biochemistry is highly compartmented relying upon a well-regulated and
selective membrane transport system. In Arabidopsis two proteins, AtAzg1 and AtAzg2, show sub-
stantial amino acid sequence similarity to the adenine-guanine-hypoxanthine transporter AzgA
of Aspergillus nidulans. Analysis of single and double mutant lines harboring T-DNA insertion alleles

AtAzg1-1 and AtAzg2-1 reveal a marked resistance to growth in the presence of 8-azaadenine and 8-
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azaguanine but not to other toxic nucleobase analogues. Conversely, yeast strains expressing AtAzg1

and AtAzg2 gain heightened sensitivity to growth on 8-azaadenine and 8-azaguanine. Radio-labeled
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purine uptake experiments in yeast and in planta confirm the function of AtAzgl and AtAzg2 as
plant adenine-guanine transporters.

AzgA © 2008 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Guanine

Transport

Uptake

Arabidopsis thaliana

1. Introduction

Nucleobases play a pivotal role in plant metabolism, contribut-
ing to DNA and RNA metabolism, and the biochemistry of carbohy-
drates, glycoprotein, phopsolipids and secondary metabolites such
as cytokinins, and caffeine [1]. A hallmark of nucleobase biochem-
istry is the high degree of compartmentation, necessitating exten-
sive intra- and inter-cellular transport as illustrated in ureide
biochemistry [2].

The Arabidopsis genome contains six different families that en-
code putative nucleobase transporters. Nucleobase-ascorbate
transporters (NATs) are ubiquitous and transport oxidized purines,
xanthine, hypoxanthine and uric acid, uracil, or ascorbate [3-6].
None of the 12 identified Arabidopsis NAT loci are yet functionally
characterized. Equilibrative nucleoside transporters (ENT) found in
plants, protozoans and mammals, act primarily as nucleoside
transporters but can also transport nucleobases adenine, guanine,
xanthine and hypoxanthine or cytokinin [7-13]. Eight identified
ENT loci are present in the Arabidopsis genome. The Arabidopsis
genome contains purine permease (PUP) and ureide permease
(UPS) gene families that are common only among plant species.
Of the 21 Arabidopsis PUPs several are known to transport adenine,
cytosine or secondary compounds such as cytokinins and caffeine
[14,15]. Two of the five transporters in the Arabidopsis UPS family

* Corresponding author. Fax: +1 260 481 6087.
E-mail address: mourad@ipfw.edu (G.S. Mourad).

transport uracil, allantoin and the purines xanthine and hypoxan-
thine [16,17]. Locus At5g03555 encodes a protein with significant
amino acid similarity to FUR4, a uracil transporter of Saccharomy-
ces cerevisiaze - belonging to the purine-related transporter or
nucleobase:cation symporter 1 family [18]. No data concerning
the function of this Arabidopsis transporter is yet published. An-
other Arabidopsis nucleobase transporter family consists of AtAzg1
(locus At3g10960) and AtAzg2 (locus At5g50300) encoding pro-
teins with significant similarity to the AzgA adenine-guanine-
hypoxanthine transporter of Aspergillus nidulans [19].

Using Arabidopsis lines harboring homozygous T-DNA insertion
alleles for AtAzg1 and AtAzg2, we performed toxic purine analogue
growth studies as well as in planta [*H]nucleobase uptake experi-
ments. In addition, yeast strains expressing AtAzgl and AtAzg2
were grown in the presence of toxic purine analogues and assayed
for the ability to transport [*H]nucleobases. Our results show that
AtAzg1 and AtAzg2 transport adenine and guanine and are the first
report linking adenine and guanine transport with specific genes in
plants.

2. Materials and methods
2.1. Arabidopsis growth conditions and genetics
Arabidopsis lines SAIL114-E03 and SALK020651 were obtained

from Arabidopsis Biological Resource Center (Columbus, OH)
[20,21]. Seeds were grown for 12-14 days at 20 °C under constant
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Table 1
Oligonucleotide primers used in this study.

Oligonucleotide name DNA sequence (5'-3')

At3g10960A GATCCCATTCCTCTTAACCAGA

At3g10960B TGCAATCACTTGTCCTTTCATC

At3g10960RSA CCGCTCGAGATGGAGCAACAGCAACAACAACAACT
At3g10960RSB ATAAGAATGCGGCCGCCTAAACGGTAGTATCAATCTCAC
At5g50300A ATTTGTTTTCTTTGCAATTTGAT

At5g50300B ACCAGTTTTGTGACATCGGTTA

SAILLB3 TAGCATCTGAATTTCATAACCAATCTCGATACAC
SALKLBb1 GCGTGGACCGCTTGCTGCAACT

UNI51REV TGGCAACTAGAAGGCACAGAC

U22685A CCGCTCGAGATGGGAAGAGAGAAGACGTTA

light on agar-solidified Minimal Arabidopsis Medium (MAM) [22]
containing 30 1M 8-azaguanine (8-azg). Light was supplied by a
combination of Cool White fluorescent and incandescent lamps
at a quantum flux rate of 130 pmol m~2 s~! (400-700 nm). Seed-
lings exhibiting resistance were transferred to potting mix BM-2
(Berger, Saint-Modeste, Québec, Canada) and grown at 20 °C under
same light conditions. DNA extraction was done using DNeasy
Plant Mini Kit (Qiagen, Valencia, CA) or QuickExtract (Epicentre,
Madison, WI). Individual plants were genotyped by multiplex
PCR using two gene-specific primers [At3g10960A & B or
At5g50300A & B] and one T-DNA specific primer [SAILLB3 or SAL-
KLBb1, respectively] (Table 1). Homozygous T-DNA insertion mu-
tants in each locus were identified then crossed to produce a
double homozygous insertion mutant (double mutant) whose
genotype was confirmed by multiplex PCR as mentioned above.

2.2. Construction of yeast expression plasmids

The coding regions derived from loci At3g10960 and At5g50300
were cloned into yeast expression vector pRG399 (vector pRS424
[23] with the PMA1 promoter [24]). Oligonucleotides At3g10960R-
SA and At3g10960RSB were used to amplify a DNA fragment from
cDNA clone U17958 [GenBank # BT010556] and oligonucleotides
U22685A and UNI51REV were used to amplify a DNA fragment
from cDNA clone U22658 [BT006441]. Resulting DNA fragments
were cloned into pRG399 producing plasmids pNS418 and
pRH162, respectively.

2.3. Yeast cultures and transformation

S. cerevisiae strains INVSC [MATa his3-Al, leu2, trp1-289, ura3-
52] (Invitrogen, Carlsbad, CA) and RG191 [Mat a, fcy2 A:: kanMX4,
his341, leu2A40, met1540, ura340] (Research Genetics, Stanford,
CA) [25] were grown in YPD or on Synthetic Complete medium
(SC) [26] at 30 °C. Yeast transformation was by the lithium acetate
method [27]. Sensitivity to toxic nucleobase analogues was as-
sayed by adding filter-sterilized stock solutions to the growth
media.

2.4. Arabidopsis radionucleobase uptake

Eleven-day-old seedlings were transferred from agar-solidified
MAM onto agar-solidified MAM supplemented with [8->H]guanine
(3.7kBqml~!) or [2,8->H]adenine (3.7 kBqml~!) (Moravek Bio-
chemicals, Brea, CA). The plants were grown for 2 days in condi-
tions of constant light at 20°C, then removed and weighed.
Three 75 mg samples of selected genotype tissue were homoge-
nized in 0.5 ml of 20 mM Tris-HCl, pH 8. After homogenization,
samples were centrifuged at 11750xg for 1 min. For each sample,
the radioactivity in 0.1 ml of extract was determined by mixing
with 3 ml of EcoLume (MP Biochemicals, Solon, OH) and measured
by using a scintillation counter.

2.5. Radionucleobase uptake by yeast expressing AtAzgl and AtAzg2

Freshly grown yeast were concentrated to ODggo = 6 and incu-
bated for 0 and 2.5 min with 0.5 uM [8->H]guanine or [2,8->H]ade-
nine in 100 mM citrate buffer (pH 3.5) with 1% glucose. Fifty
microliter aliquots were added to 4 ml of ice-cold water and fil-
tered through a 0.45 pm Metricel membrane filter (Gelman Sci-
ences, Ann Arbor, MI). Filters were then washed with 8 ml of
water and radioactivity was measured by scintillation counter. Sta-
tistical analysis used an independent paired t-test. Significance was
measured at P=0.1(*) and at P = 0.05(**).

3. Results and discussion

3.1. Arabidopsis genome encodes proteins similar to A. nidulans
adenine-guanine transporter AzgA

The Arabidopsis genome contains two genes that encode for
proteins showing substantial amino acid similarity to the A. nidu-
lans guanine-adenine transporter, AzgA [19]. Amino acid align-
ments of AtAzgl and AtAzg2 show a 36.5%/56.3% and 38.5%/
65.8% amino acid identity/similarity to AzgA, respectively. Com-
parison of the two Arabidopsis proteins reveals levels of sequence
similarity at 48.3%/77.6% aa identity/similarity, however, these val-
ues suggest that AtAzg1 and AtAzg2 are not the result of a very re-
cent gene duplication (Fig. 1A). Secondary structure predictions
strongly suggest that AtAzgl and AtAzg2 are integral membrane
proteins supporting similarly placed transmembrane spanning do-
mains (Fig. 1A). AtAzg1 is predicted to have eight transmembrane
spanning domains when analyzed by TMHMMv2.0 or 10 trans-
membrane spanning domains when analyzed by SVMtm, Split4.0
or MINNOU protein secondary prediction programs, while AtAzg2
always has a strong prediction for ten transmembrane spanning
domains [28-30]. AtAzg1 contains two larger hydrophilic regions
while AtAzg2 contains a predicted chloroplast targeting sequence
(Fig. 1A).

Genes encoding AzgA-like proteins are found throughout the
plant kingdom and present as three independent clades as shown
in a phylogram including representative members of Plantae
(Fig. 1B). Two clades consist of dicotyledonous species Arabidopsis
thaliana and Vitis vinifera and the monocotyledon Oryza sativa con-
tain AtAzg1 and AtAzg2 paralogues, while the non-vascular moss
Physcomitrella patens contains only one AtAzgl-like paralogue. In
contrast, a separate clade containing two AzgA-like proteins from
the green alga Chlamydomonas reinhardii indicates an earlier diver-
gence of AzgA-like genes. Similar AzgA-like proteins are encoded in
diatom and cyanobacterial genomes (data not shown). Although
AzgA-like proteins are related to NATs they lack a motif essential
for NAT substrate specificity and binding [19,31]. Together, the se-
quence similarities and structural predictions support the view
that AtAzgl and AtAzg2 are adenine-guanine transporters in
Arabidopsis.

3.2. T-DNA insertion mutations in AtAzg1 and AtAzg2 confer resistance
to some toxic purine analogues in Arabidopsis seedlings

Gene expression compiled from publically available databases
(e-FP Browser, Genevestigator Gene Atlas and Chronologer found
at The Arabidopsis Information Resource Web site) reveals that
on a developmental view that AtAzg1 and AtAzg2 have similar lev-
els of expression in seedlings and young plants. AtAzg1 has higher
levels of gene expression in mature leaves, inflorescences and
developing flowers compared to AtAgz2, while AtAzg2 is more
highly expressed in developing endosperm and seed stages 4-7
[32].



T.A. Mansfield et al./FEBS Letters 583 (2009) 481-486 483

Ithzgl QU= Snns QQQQEAPSTTTIPH-~—~~~ &3]
A Athzg2 QE!'SSSCICSL HLLVIGL LCKBUBD?}G{%"E %@ B
S ! %5:
Athzgl TEPGLRL IQPDVECKINPLY A58 M1 L
sy fpemm— |
.

EEEEREREREEES

Athzgl
Athsg2

SHED( IP\Tt &IEQSQC AlAzg1
] STL‘ SSPPGFECY

R

Athzgl

Athzg2 Oryzal

Athzgl I VRISEREIG I GLTH & I‘ll-Ln M0 SR )
DtR=zg2 | TEEAAAC s GIG AFUGLOQ GIG Physcamitrella
EEEEEERERERERRERRLRE
e

Athzgl

A AtAzg2
EEXETRERRLRETRTRERRRNEY

Athzgl | v e .mm

RtRzg2 B 176 IUEUT A1 SR L s —— Vits2

187 PR R oz

B e R XX

Rthzgl DSIBSaI i PUT M ITTPL| Chlamydomonas1
Athzg2 | 33, T AT ERMEPFTPL)
E T S FEEEERERERREREE
B T

Rthzgl #asf Chiamydomonas2

Rthzg2 [TH, )
EEETTERRE *WT*‘RT***#***X**XTTTT
++4 s TR B e s

AzgA

i EEIRTIREERReE —

Fig. 1. Amino acid sequence similarity and phylogenetic relationships of AtAzg1 and AtAzg2. (A) Alignment of AtAzg1l and AtAzg2 amino acid sequences by Clustal W [35].
Black boxes represent amino acid sequence identity while grey boxes identify similar amino acids. Bold italic font on AtAzg2 denotes a probable chloroplast transit sequence
[36]. Location of transmembrane spanning domains for AtAzgl (stars*) and AtAzg2 (pluses +) predicted by TMHMM v 2.0 [37]. (B) Phylogenic relationship of AzgA-like
proteins from Arabdiopsis thaliana GenBank #AAQ65179.1 (AtAzg1), BAB09401.1 (AtAzg2); Vitis vinifera CAN76560.1 (Vitis1), CAO64167.1 (Vitis2); Oryza sativa EAY97568.1
(Oryzal), EAZ18210.1 (Oryza2); Physcomitrella patens EDQ66119.1 (Physcomitrella); Chlamydomonas reinhardtii EDP08303.1 (Chlamydomonasl), XP001698486.1
(Chlamydomonas2) and Aspergillus nidulans Q07307.3 (AzgA). The tree represents an unrooted maximum parsimony [38].

AtAzgl and AtAzg2 are expressed in germinating seedlings, on growth. Homozygous mutant lines carrying allele AtAzgl-1
young roots and leaves [32]. Seedlings offer an informative devel- (SAIL_114_E03) or allele AtAzg2-1 (SALK 020651) exhibited strong
opmental stage to access the effect of toxic nucleobase analogues resistance to 8-azg (Fig. 2). Double mutant plants show increased
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Fig. 2. Growth of AtAzg mutants on toxic purine analogues. (A) AtAzg1-1 (top left) and AtAzg2-1 (top right), and wild-type (bottom) on 8-azaadenine. (B) AtAzg1-1 (top right),
AtAzg2-1 (bottom left), and double mutant (top left) and wild-type (bottom right) on 8-azgaguanine. (C) Effect of a concentration series of 8-azg on the fresh weight of AtAzg1-
1, AtAzg2-1, double mutant, and the wild-type. Values shown are the mean of three independent experiments. Error bars indicate the standard error of the mean.
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Table 2
Resistance of mutants AtAzgl-1 and AtAzgl-2 to toxic purine vs. pyrimidine
analogues.

Toxic analog AtAzgl-1 AtAzg2-1

8-Azaadenine ++ +
8-Azaguanine +++ ++
2-Bromodeoxyuridine — -
2-Fluorocytosine — -
2-Fluorodeoxyuridine -

5-Fluoroorotic acid —

5-Fluorouracil - +

0.7
= Wild Type
8 Atdzg2-1
0.6 1 0 Atdzgl-1
o Double mutant

nmol[*H|nuc g' fresh weight

Guanine

Adenine

Fig. 3. Uptake of [*H]-adenine and -guanine by 11-day-old seedlings. The code for
the bars is as follows: wild-type, black; AtAzg2-1, dark grey; AtAzgl-1, light grey;
and double mutant, white. Values shown are the mean of three independent
experiments. Error bars indicate the standard error of the mean. Statistical analysis
used an independent paired t-test. Significance was measured at P=0.1(*) and at
P =0.05(*").

resistance when grown on 8-azg over either single mutant (Fig. 2B
and C). AtAzgl-1 mutant plants exhibited a stronger resistance
phenotype than did the AtAzg2-1 mutant plants (Fig. 2C). Based
on ICso values, AtAzgl-1 is 3-fold more resistant to 8-azg
(IC50 = 12.5 uM) while AtAzg2-1 is nearly 2-fold more resistant to
8-azg (ICso=7.5 M) when compared to wild-type (ICso =4 puM)
(Fig. 2C). The double mutant exhibited a synergistic effect with
an ICsg value of 34.5 M for 8-azg. This represents an 8.5-fold resis-
tance compared to wild-type (Fig. 2C). The stronger resistance to
8aza and 8azg observed with AtAzgl-1 vs. AtAzg2-1 plants can be
explained in terms of gene expression levels. Plants were exposed
to 8-aza and 8-azg for 12 days during which time AtAzgl is ex-
pressed 2.5-3 times higher than AtAzg2 (Genevestigator Gene
Chronologer). The higher level of resistance reflects the greater
depletion of adenine/guanine transporters in AtAzgl-1 plants.
When AtAzgl-1 mutants were grown on 5-fluorouracil no resis-
tance was observed, however, a small level of resistance was ob-
served with the AtAzg2-1 mutants. This observation suggests that
the substrate specificity of AtAzg2-1 differs slightly from that of
AtAzg1-1. No resistance was observed to any other compound at
concentrations lethal to wild-type (Table 2).

3.3. AtAzg1-1 but not AtAzg2-1 seedlings are deficient in the uptake of
[’H]-adenine and -guanine

AtAzg2-1 seedlings did not show a significant decrease in uptake
for either [*H]-adenine or -guanine (P=0.3631 and P=0.8144,
respectively) when compared to the wild-type (Fig. 3). However,
AtAzg1-1 seedlings showed a statistically-significant reduction in
the uptake of [*H]-adenine (43%) and [*H]-guanine (59%) (Fig. 3).
Double mutant seedlings showed a highly statistically-significant
reduction in the uptake of [*H]-adenine (75%) and [>H]-guanine
(84%) when compared to wild-type (Fig. 3).

Several interesting results emerge from the data. First, in both
the growth studies and in the [>H]-purine uptake studies the AtA-
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Fig. 4. Growth of S. cerevisiae cells expressing AtAzgl and AtAzg2 on toxic purine analogues and uptake of [*H]-adenine and -guanine. (A) Wild-type (INVSC), fcy2 mutant
(RG191), RG191 expressing AtAzgl (RG191 + AtAzgl) and RG191 expressing AtAzg2 (RG191 + AtAzg2) grown on SC medium supplemented with 0, 1 or 2 mM 8-azaguanine or
8-azaadaneine. (B) RG191 + AtAzg1 (light grey), +AtAzg2 (dark grey) or empty (white) was incubated with 0.5 uM of either [*H]-guanine or -adenine in citrate buffer (pH 3.5).
Aliquots were taken at 0 and 2.5 min and filtered. Radioactivity is expressed as nmol of labeled nucleobase per 10° cells. Values shown are the mean of at least three
independent experiments. Error bars indicate the standard error of the mean. Statistical analysis used an independent paired t-test. Significance was measured at P=0.1 (*)

and at P = 0.05(**).
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zg1-1 plants are more deficient in adenine or guanine transport
than AtAzg2-1 plants. Second, plants deficient for both AtAzg loci
are far more affected in purine transport than either single mutant
or the additive deficiency of both. Third, AtAzg2-1 plants show
some resistance to growth on 8-azg and 8-aza but no statistical dif-
ference in the uptake of [>H]-adenine or [*H]-guanine compared to
wild-type. These results can be explained in part by considering
different subcellular locations of AtAzg1 and AtAzg2. If AtAzgl is
located in the plasma membrane and represents the major route
for adenine and guanine entry, then a loss of this protein will result
in toxic analogue resistance and reduction in uptake of adenine
and guanine. If AtAzg2 is located in the plastid membranes - as
suggested by the predicted chloroplast targeting motif in AtAzg2
(Fig. 1A) - then labeled purines can still enter the cell but toxic
purine analogues are inefficiently catabolized due to restricted en-
try into the plastid. When compared to wild-type, little difference
in radiolabel uptake by AtAzg2-1 would be evident, yet resistance
to toxic analogues would be observed. This was the case.

3.4. Heterologous experiments in yeast reveal that AtAzg1 and AtAzg2
act as adenine-guanine transporters

Two separate sets of experiments used S. cerevisiae strains to
test whether AtAzgl and AtAzg2 act as transporters. The first
experiment determined if AtAzgl and AtAzg2 could influence the
growth of yeast on toxic purine analogues. The second experiment
measured the ability of yeast containing AtAzg1 or AtAzg2 to take
up [>H]-adenine or -guanine. S. cerevisize do not have AzgA-like
transporters, but do contain a transporter named Fcy2 that trans-
ports adenine, guanine and cytosine [33]. Fcy2 belongs to the
Nucleobase:Cation Symporter-1 family. Yeast strains deficient in
Fcy2 display heightened resistance to growth on 5-fluorocytosine
(5-FC), 8-aza and 8-azg [34]. The addition of functional adenine-
guanine transporters to fcy2 strains would increase the sensitivity
to growth on 8-aza and 8-azg, but not 5FC. The coding regions of
AtAzg1 and AtAzg2 were cloned into yeast expression vectors, intro-
duced into an fcy2 deficient strain, RG191, and the resulting trans-
formants challenged for growth on varying concentrations of the
three toxic nucleobase analogues. While untransformed control
RG191 was unaffected by growth on 1-2 mM 8-aza or 8-azg,
wild-type yeast (INVS) as well as AtAzgl- and AtAzg2-containing
RG191 strains showed limited or no growth (Fig. 4A). No difference
in growth on 20 and 40 mM 5FC was observed for RG191 or trans-
formants, yet was lethal for wild-type strains (data not shown).
This data reflects the nucleobase specificity observed in the mutant
Arabidopsis growth experiments mentioned above, namely resis-
tance to adenine and guanine but not cytosine analogues. Further,
these data reflect the transport specificity observed for Aspergillus
AzgA but not the yeast FCY2.

If AtAzg1 and AtAzg2 act as adenine-guanine transporters then
the presence of these transporters in yeast should enhance the up-
take of radio-labeled adenine and guanine. This is indeed the case
as yeast strains transformed with AtAzg1 or AtAzg2 showed a highly
significant increase in uptake of [*H]-adenine, 91% and 67%, and
[*H]-guanine, 45% and 82%, over control yeast, respectively
(Fig. 4B). The ability of each of AtAzgl & 2 to transport adenine
and guanine in yeast cells further supports their role as plant ade-
nine-guanine transporters. The data presented in this paper clearly
define AtAzgl and AtAzg2 as AzgA-like adenine-guanine trans-
porters in plants.
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