Reflections on the Ecology and Epidemiology of Eastern Equine Encephalitis in the Northeastern United States

Theodore G. Andreadis

Center for Vector Biology & Zoonotic Diseases and Northeast Regional Center for Excellence in Vector-Borne Diseases The Connecticut Agricultural Experiment Station New Haven, CT

Eastern Equine Encephalitis

- Most pathogenic arthropod-borne virus in North America (Alphavirus: Togaviridae, SSRNA)
 - ~ 6-7 human cases / year
 - 40% case fatality rate
 - Neurological impairment in survivors (35%)
 - No commercial vaccine or effective treatment
- Activity is most common in and around freshwater hardwood swamps – highly focal
- Perpetuates in an enzootic cycle involving wild Passeriformes birds and ornithophilic mosquitoes
- Principal enzootic vectors in the northeastern US
 - Culiseta melanura
 - Culiseta morsitans

Role as "bridge vectors"

unresolved

Key EEE Historical Events – Northeastern US

- <u>1831</u> First equine outbreak of EEE virus in Massachusetts "horses dying of a brain disease"
- 1933 First isolation of EEE virus from horse brain during an outbreak in coastal areas of Delaware, Maryland, New Jersey and Virginia
- 1934 Mosquitoes first incriminated as potential vectors in a series of vector competence studies with species of *Aedes*, *Culex* and *Coquillettidia*
- 1935 Birds considered as reservoir hosts; 1950 first isolation of EEE made from a wild bird
- 1938 The first human cases confirmed 35 (25 fatal) human cases, > 300 horse cases in Massachusetts; 38 horse cases in Connecticut
- 1938 Shown that virus could cause of encephalitis in wild and domestic pheasants in Connecticut
- <u>1949</u> First isolation of EEE virus from mosquitoes *Cq. perturbans*
- 1951 First isolation of EEE virus from Culiseta melanura
- <u>1959</u> Major outbreak in New Jersey 33 human cases
- 1971 EEE discovered in Central New York 1st human case

Human Cases of EEE in the United States 1964 - 2019

Human and Veterinary Cases of EEE in the Northeastern US - 2019

Factors Contributing to the Resurgence of EEE in the Northeastern US

- Reforestation and wetland restoration by mid 1800's much of the forests in the northeastern US were stripped and cedar swamps were destroyed
- Suburban development near critical wetland mosquito habitat
- Changes in average temperatures and precipitation events related to climate change
 - Milder winters
 - Warmer summers
 - Extremes in both precipitation and drought

- Increased habitat for *Culiseta melanura*
- Proliferation of wetland roosting sites for birds (e.g. robins, wood thrush)
- Increasingly expose people to the threat of EEE infection
- Enhance overwintering survival
- Extend transmission season
- Accelerate generation time
- Increase frequency of blood feeding
- Accelerate virus replication within mosquito
- Allow mosquitoes to extend northward range

Historical Risk Factors for EEE in the Northeastern US

<u>Pre-Season</u>

- Significant EEE activity in the previous year
- Mild winters with insulating snow cover
- High water table in enzootic swamps
- Above average rainfall in the prior fall/winter and spring

In-Season

- Above average Culiseta melanura populations
- EEE virus isolations from mosquitoes in June or early July
- Isolations of EEE virus from a mammalbiting mosquitoes – Cq. perturbans
- ✓ Numerous EEE isolations > 30 50
- ✓ High MIR in Culiseta melanura >1:1000
- EEE activity beyond traditional areas
- Early and above average equine cases
- Infection of a human prior to August

EEE isolations and abundance of *Cs. melanura* – Connecticut, 1996-2019

Culiseta melanura

- Habitat: Densely wooded freshwater swamps (red maple and white cedar) and sphagnum bogs
- Development: Develop in subterranean "crypts" in deep shaded cavities under tree roots
- Seasonal Distribution: mid-May October
- Feeding Preference: Primarily birds with occasional feeding on mammals including humans
- Number of Generations: 2-3 per year
- Adult Flight Range: > 2 miles
- Overwintering Stage: Larvae (all instars)

Phenology of Overwintering Development of Cs. melanura

EEE Virus Isolations from Mosquitoes in Connecticut 1996 - 2018

Species (n = 19)	No.
Cs. melanura	264
Ae. canadensis	32
Ae. cinereus	18
Ae. vexans	15
Cx. salinarius	12
Ur. sapphirina	12
Cx. pipiens	10
Ae. trivittatus	9
An. punctipennis	8
Ae. cantator	5
Cs. morsitans	5
Cq. perturbans	4
Others (7 species)	18

EEE Virus Detections from Mosquitoes in CT, MA, NJ and NY - 2019

Mean EEE Virus Titers in Field-Collected Mosquitoes by Plaque Assay 1

- There are major differences in the quantity of virus found in EEE virus-positive, fieldcollected mosquitoes
- Cs. melanura appears to be the only species in which virus titers are sufficiently high enough to support efficient transmission
- Other species include Ae. cinereus, Cq. perturbans, Ae. canadensis
- Important to consider virus titers when implicating other mosquito vectors

¹Armstrong & Andreadis EID 2010

²Nasci & Mitchell JAMCA 1996

Host Feeding Patterns of *Culiseta melanura* and Potential Bridge Vectors of EEE in the Northeastern US (CT, MA, NY, VT)

Proportion of Avian and Mammalian Derived Blood Meals in *Culiseta melanura* populations in the Northeastern US

EEE Antibody Prevalence in Wild Birds: Regional Comparisons

Tracking Eastern Equine Encephalitis Virus Perpetuation in the Northeastern United States by Phylogenetic Analysis

PM Armstrong, TG Andreadis, JF Anderson, JW Stull, CN Mores. 2008. *Am. J. Trop. Med. Hyg.*

- EEE viruses group into temporally discrete genetically diverse clades by year suggests separate annual introduction events into the region
 - Migrating viremic birds
- Some strains persist into 2nd year - provides evidence for local overwintering
 - Vertical transmission in mosquitoes (Philbrook et al. CDC TR 1961)
 - Recrudescence in chronically infected birds (Crans et al. JME 1994)
 - Reptiles or amphibians (?)
- Support for both hypotheses

Journal of Virololgy 92 (12), 2018, 1-18.

Large-Scale Complete-Genome Sequencing and Phylodynamic Analysis of Eastern Equine Encephalitis Virus Reveals Source-Sink Transmission Dynamics in the United States

Tan et al. (19 authors)

- Sequenced complete genomes of 433 EEEV strains collected within the U.S. from 1934 to 2014
- EEEV evolves relatively slowly and that transmission is enzootic in Florida, characterized by higher genetic diversity and long-term local persistence
- EEEV in CT, MA and NY were characterized by <u>lower genetic diversity</u>, <u>multiple introductions</u>, and <u>shorter local</u> <u>persistence</u>
- Supports a source-sink model in which <u>FL</u> is the major source of EEEV

Northeastern US EEE Virus Transmission Cycle

Expectations for 2020

- High likelihood that the EEE virus will reemerge
 - EEE usually persists after a major outbreak
 - Have consistently experienced equine and/or human cases every year since 2004
- Unlikely that we will experience as high a level of EEE virus activity
 - Herd immunity in reservoir birds dampen enzootic transmission
- Remains to be seen how widespread activity will be
 - Will we see further expansion into NH, ME and VT?

Research – Surveillance Priorities

- Human serosurvey human exposure ?
 - EEE antibodies detected in 0.7% of persons with no history of encephalitis after 1955 outbreak in Massachusetts (Feemster et al NEJM 1958)
 - Inapparent infections ranged from 3.1% to 7.6% after the
 1959 outbreak in New Jersey (Goldfield et al. Am J Epidem 1968)
- Identification of Cs. melanura breeding sites in newly recognized foci of human and animal infection
- Screening larvae for virus overwintering
 - One reported isolation of EEE virus from Cs. melanura larvae (Philbrook et al CDC Tech Rep 1961)
 - Never been duplicated or confirmed
- Pre-season treatment of Cs. melanura breeding sites
 - Methoprene has been shown to be an effective larvicide when applied by fixed wing aircraft (Woodrow et al JAMCA 1995)
- Enhanced mosquito surveillance in season

EEE Challenges and Issues

- 1. Risk assessment and communication
 - How do best assess human risk and communicate it to the public
 - Analysis and interpretation of surveillance findings
 - Triggers for response
- 2. Sharing samples for genetic analysis and validation
 - Virus availability virus isolation vs PCR detection
- 3. Delays in laboratory diagnosis of human infection
 - Concerns with commercial labs serology and false negatives
- 4. Prevention and control
 - Personal protective measures effectiveness?
 - Preseason preemptive treatments of *Cs. melanura* breeding sites with larvicides
 - Truck-mounted and aerial adulticides how do we evaluate effectiveness
 - Difficulties with public acceptance environmental issues
 - Delays in implementation and high costs
 - What level of control is needed to reduce human risk of infection

