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We work to understand the chemical composition of the atmosphere, the effect
of human activity, and the implications for climate change and life on Earth

Global modeling Satellite observations
(GEOS-Chem) NASA aircraft missions (NASA A-Train)




EARTH SCIENCE SERVING AIR QUALITY MANAGEMENT NEEDS

Earth science resources

Air Quality Management Needs
 Pollution monitoring

* EXposure assessment

* AQ forecasting

- o » Source attribution of events
suborbital platforms « Quantifying emissions

« Natural&foreign influences
 AQ processes
* Climate-AQ interactions

=

models

19 investigators partnering with AQ managers in a large number of projects

WORK WITH US! http://acmg.seas.harvard.edu/agast



Effect of climate change on air quality

Expected effect of Observed dependences on
21st-century meteorological variables
climate change (polluted air)
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Climate change is expected to degrade ozone air quality; effect on PM uncertain

Jacob and Winner [2009]



IPCC projection of 21st-century climate change in N. America
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* Increasing temperature everywhere, largest at high latitudes

 Frequency of heat waves expected to increase

 Decrease in equator-to-pole contrast expected to weaken winds,
decrease frequency of mid-latitude cyclones and associated cold fronts

IPCC [2007]



IPCC projection of 21st-century climate change in N. America

2080-2099 vs. 1980-1999 mean changes for 21 climate models in A1B scenario
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* Increasing temperature everywhere, largest at high latitudes

* Frequency of heat waves expected to increase

 Decrease in equator-to-pole contrast expected to weaken winds,
decrease frequency of mid-latitude cyclones and associated cold fronts

IPCC [2007]



Importance of mid-latitudes cyclones
for ventilating the eastern US

June 14, 1988
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» Cold fronts associated with cyclones tracking across southern Canada are
the principal ventilation mechanism for the Midwest and East
» The frequency of these cyclones has decreased in past 50 years, likely due

to greenhouse warming

Leibensperger et al. [2008]



Observed trends of ozone pollution and cyclones in Northeast US

# ozone episode days (0;>80 ppb) and # cyclones tracking across SE Canada
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» Cyclone frequency is predictor of interannual pollution variability

* Observed 1980-2006 decrease in cyclone frequency would imply a corresponding
degradation of air quality if emissions had remained constant

» Expected # of 80 ppb exceedance days for Northeast average ozone dropped
from 30 in 1980 to 10 in 2006, but would have dropped to zero in absence of
cyclone trend

Leibensperger et al. [2008]



Assessing the effect of 2000-2050 climate change
on ozone air quality in the US
Results from six different coupled chemistry-climate models

2000-2050 change of 8-h daily max ozone in summer,
Ppb- keeping anthropogenic emissions constant
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» Models show consistent projection of ozone increase over Northeast
» Typical mean increase is 1-4 ppb, up to 10 ppb for ozone pollution episodes
* Increase is largest in urban areas with high ozone

Weaver et al. [2010]



Effect of air pollutants on climate change
Radiative forcing is the fundamental metric for climate science and policy
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1. Global radiative equilibrium: F;,, = F
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2. Perturbation to greenhouse gases or aerosols disrupts equilibrium: F,, # F
- AF=F, - F,, Is called the radiative forcing
 Global response of surface temperature is proportional to radiative
forcing: AT ~ AF
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1750-2005 radiative forcing of climate change

Radiative forcing of climate between 1750 and 2005
Radiative Forcing Terms
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« CO, forcingis 1.6 £ 0.2 W m-

» Methane is the second most
Important anthropogenic
greenhouse gas

*Tropospheric ozone forcing
is +0.3-0.7 W m?; range
reflects uncertainty in natural
levels

» Aerosol forcing could be as
large as -2 W m2; range
reflects uncertainty in aerosol
sources, optical properties,
cloud interactions

IPCC [2007]



Long-lived greennouse gases

Shortdived gases

Aerosols and pracursors

1750-2005 radiative forcing referenced to emissions

anthropogenic
emissions
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Methane is “win-win” for climate and air quality —
but only as part of a global strategy

Effect on surface ozone air quality is through decrease in ozone background
and does not depend on where methane emission is reduced
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Global 2005 anthropogenic methane
emissions (EDGAR inventory): US
accounts for ~10%

Source UusS Global
(Tg al) |[EPA, 2009]

Fossil fuel 9.5 80-120 l '.
Agriculture 8.2 110-200 R
Landfills 7.0 40-70


http://edgar.jrc.ec.europa.eu/img/part/ch4_map_big.gif

Satellite data enable monitoring of US methane emissions

SCIAMACHY column methane, June-August 2004
Methane observations GEOS-Chem w/EPA emissions Difference (model-obs)

Blue = EPA too low
1,8etf Red = EPA too high

1,70e-06

* Inventories too low in central US: agriculture, oil/gas?

* Inventories too high in New England: ?? _
Kevin Wecht (Harvard)



Direct Radiative Forcing (W m*)

Climate effect from US anthropogenic PM
1950-2050 GEOS-Chem simulation coupled to NASA/GISS climate model
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Observed US surface temperature trend

°C | contiguous US T .
« i _ Nowarming from 1930 to 1980,

sharp warming after 1980
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“Warming hole” observed in eastern US
from 1930 to 1990; US PM signature?

GISTEMP [2010]

-1.00-0.75-0.50 -0.30 -0.20 -0.10-0.05 0.05 0.10 0.20 0.30 0.50 0.75 1.00



1950-2050 surface temperature trend in eastern US
L(.eibelnsplergelr et_al. [|201?]
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» US anthropogenic PM sources can explain the “warming hole”
* PM removal has caused accelerated warming in eastern US since 1990s



Application of GEOS-Chem continental-scale model simulations
to regional/transboundary/intercontinental air quality issues

Color scale Indicates topography (surface pressure)
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Continental-scale simulation nested within global domain



Ozone background used in EPA Integrated Science Assessment

Observations

[ Standard — as described above
four

GEOS-Chem —

: : NA background - no N.American anthro emissions
simulations

__Natural — no anthro emissions worldwide

2006 MDA8 ozone at Northeast CASTNet sites- with mean (4" highest) inset
Connecticut Hill, NY (42N, 76W, 501m) Kane Exp. Forest, PA (41N, 78W, 622m)
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 Mean NA background over Northeast is 29 ppb (spring), 20 ppb (summer)
» Peak background events of 50 ppb (lightning) can lead to total ozone > 80 ppb

Zhang et al. [2011]



Model “4™" highest” MDA8 ozone in 2006

Annual 4™ highest ozone
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* Ozone episodes in Northeast usually
(not always) associated with low
background

» Background will become an
Important issue as US sources
decrease and the NAAQS tightens
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Zhang et al. [2011]



Canadian pollution influence on ozone in Northeast US

Mean Canadian/Mexican pollution influences on MDAS8 ozone (Jun-Aug 2001)
as determined by a GEOS-Chem simulation with those sources shut off
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Mean national influence over US is small (3 ppb) but regional influence can be large

Wang et al. [2009]



Relevance of Canadian pollution for US air quality policy

Number of days per year when MDAS8 ozone exceeds 75 or 70 ppb
and Canadian pollution influence exceeds 10 ppb

c Ozome = T5pph CAN=10ppb e Ozome =T0ppb CAMN=10ppb

Canadian sources need to be considered in ozone mitigation plans for Northeast

Wang et al. [2009]



Decrease of North American NO, emisssions, 2005-2009

as seen with annual mean NO, columns from the OMI satellite instrument

[x 10 molec. cm'z]

Decreases in both the eastern US and eastern Canada

Shailesh Kharol (Dalhousie)



Visibility in US wilderness areas

EPA Regional Haze Rule aims for natural visibility to be achieved in all US
Federal Class 1 areas by 2064; Phase 1 implementation for 2004-2018

GEOS-Chem simulations
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Canadian emissions would prevent attainment of natural visibility in Northeast
even with zeroed US emissions; choice of endpoint affects Phase 1 implementation

Park et al. [2000]



Nitrogen deposition in the US
GEOS-Chem simulation for 2006-2008, reproduces well NADP data
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* Nitrogen deposition in the Notheast exceeds critical loads
* Most of that deposition is as nitric acid originating from NO, emissions

Zhang et al. [2012]



Source contributions to nitrogen deposition
as computed from GEOS-Chem sensitivity simulations
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Nitrogen deposition in Northeast is 10-fold higher than natural and mainly from
domestic sources Zhang et al. [2012]



Mercury (Hg) emissions and deposition in US

Mercury deposition(2008-2009)
Mercury emissions (EPA) Circles: observed Background: GEOS-Chem
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* Emission is both as Hg(0) (transported globally) and Hg(ll) (deposits locally)
» There is evidence for rapid conversion of Hg(ll) to Hg(0) in combustion plumes
* Only 10-20% of mercury deposited in US is of direct US anthropogenic origin

Y. Zhang et al. [2012]



BIOGEOCHEMICAL CYCLING OF MERCURY

very much the same story as carbon
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http://www-as.harvard.edu/chemistry/trop/news.html
http://iconbazaar.com/bars/contributed/pg04.html

Historical inventory of global anthropogenic Hg emissions
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Large legacy contribution from N. American and European emissions; Asian
dominance is a recent phenomenon

Streets et al. , 2012



Contribution of old anthropogenic (legacy) mercury
to global atmospheric deposition and surface ocean

GEOS-Chem based global biogeochemical model of mercury cycling
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Mercury pollution is mainly a legacy problem that will take centuries to fix;
all we can do in short term is prevent it from getting worse

Helen Amos, Harvard



