

Predicting Weather and Air Quality: from impacts of extreme storms in the Northeast to multi-decadal ozone simulations over the Contiguous United States

Marina Astitha

Assistant Professor

PhD students: Jaemo Yang, Huiying Luo

marina.astitha@uconn.edu Websites: airmg.uconn.edu, cee-wrf.engr.uconn.edu

Department of Civil & Environmental Engineering, University of Connecticut, Storrs-Mansfield, CT, USA

RESEARCH TOPICS

- Extreme weather events: forecasting and impacts to the power network
- Air quality: prediction, evaluation and the way forward

http://www.eversource.uconn.edu/

Extreme weather events: forecasting and impacts to the power network

School of Engineering

Extreme weather events: forecasting and impacts to the power network

Outage Prediction Model System Architecture

Extreme weather events: forecasting and impacts to the power network

Outage Prediction Model System Architecture

OBJECTIVE: Improve weather forecasting functionality and uncertainty characterization

- **1.** Bayesian regression peer-review publication in Journal of Journal of Applied Meteorology and Climatology (Yang et al. 2017, minor revision, JAMC).
- **2.** Analog ensemble forecast: collaboration with NCAR-RAL (Summer Advance Program Study at NCAR, PhD student Jaemo Yang) (2 manuscripts in preparation).
- **3.** Dynamic Ensemble Forecast; collaboration with NCAR-MMML (on-going).
- **4.** Real-time weather forecast from two state-of-the-art NWP models.

WIND SPEED Error Statistics 146 storms (2004-2016)

Outage Prediction Modeling

Air quality: prediction, evaluation and the way forward

RESEARCH OBJECTIVES

- ✓ Analyze and interpret features embedded in tropospheric ozone observations and model outputs within a 21-year period (1990-2010)
- ✓ Assess the model's ability to reproduce the O₃ changes as seen in observed concentrations
- ✓ Can we develop confidence intervals for the estimated design value?

Air quality: prediction, evaluation and the way forward

- ✓ On-going collaboration with scientists from the Office of Research and Development (ORD), National Exposure Research Laboratory (NERL) of the EPA: Drs. C. Hogrefe and R. Mathur
- ✓ Project funded by the Electric Power Research Institute (EPRI)

Models and Data

- ✓ 21-years of coupled **WRF-CMAQ** simulations (1990-2010) over the USA driven with internally consistent historic emission inventories and boundary conditions derived from the hemispheric CMAQ model (Gan et al. 2015; Xing et al. 2013)
- ✓ **Observations** of the summertime (May-September) daily maximum 8-hr average (*DM8HR*) ozone concentrations from U.S. EPA's Air Quality System (AQS) for the period 1990-2010

Data Analysis

Spectral decomposition using the Kolmogorov-Zurbenko (KZ) filter (Zurbenko 1986;

Eskridge et al. on an iterative

DM8HR ozone

- short-term
- long-term

Baseline (BL)=I Synoptic Forcir

5). **KZ** is based om the data.

nd trend: **BL**)

AQS Stations across CONUS (#259)

Operational Evaluation (DM8HR)

1990-2010

Operational Evaluation

Relationship between 4th highest O₃ concentration and BLmean

Strong linear correlation between 4th highest and BLmean: suggests that the long-term component controls the exceedances

What controls O₃ exceedances? Correlations; NE U.S. for 1990-2010 (21-y)

-80

-78

-76

-74

Model and observations show that the Baseline is the main driver for the O₃ exceedances

-76

-74

-72

-70

-80

-78

4th –4th highest; ex –# of days exceeding 70ppb; BL – Baseline mean; SY – stdev of SY forcing

-70

-72

AQS stations in CT

Greenwich

Greenwich

Confidence intervals for Design Values

(preliminary results)

Design Value (3-y average of 4th highest DM8HR)

Mean of 21 DV \pm 2 std. dev. of 21 DV

Example:

Future year = 2010

Base year = 1995

Projected Baseline:
$$BL_{proj,2010} = BL_{Obs,1995} \cdot \frac{\overline{BL_{CMAQ\ 2010}}}{\overline{BL_{CMAO\ 1995}}}$$

Reconstruction of the ozone time-series:

$$O_3(2010)_1 = BLproj(2010) + SYobs(1990) \longrightarrow 4^{th} (2010),1$$
 $O_3(2010)_2 = BLproj(2010) + SYobs(1991) \longrightarrow 4^{th} (2010),2$
...

 $O_3(2010)_2 = BLproj(2010) + SYobs(2010) \longrightarrow 4^{th} (2010),21$

DV(2010),1=MEAN4th(2010,2009,2008) DV(2010),2=MEAN4th(2010,2009,2008)

... DV(2010),21=MEAN4th(2010,2009,2008)

Bounds for the Design Value (3-year average 4th highest ozone conc)

10-year projection interval

Sites showing agreement/disagreement

2000-2010 projection

Green: Observed is within the estimated confidence bounds

Red: Outside (possible due to 36-Km CMAQ

grids)

Bounds for the Design Value (3-year average 4th highest ozone conc)

15-year projection interval

1995-2010 projection

Green: Observed is within the estimated

confidence bounds

Red: Outside (possibly due to 36-Km CMAQ grids)

Few remarks on the air quality modeling study

- ➤ Long-term simulations provide a unique opportunity to assess the changes caused by emission reduction policies
- In general, the model underestimated the observed trends in most regions, denoting a smaller pace in the ozone reduction than what the observations are showing.
- There is a strong relationship between the baseline (long-term forcing) and number of exceedances in both observations and model simulations
- Accurate prediction of changes in baseline O₃ coupled with observed historic SY provide a robust estimate of the impact of emission controls.

