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Emerging Research In:

Photocatalysis Photovoltaics
- The use of light energy to effect chemical - Direct conversion of radiant solar power to
change, e.g.: electrical power
* Light-activated degradation of pollutants in

- Reduces air pollution by displacing
combustion of fossil fuels

water or air
* Use of light energy to split water into H, and O,

Recent developments: Recent developments:

. Better use of sunlight - Major cost reductions due to:
* Improvements in silicon PV manufacture
- Higher reaction rates  Dye-sensitized solar cells

.. * Perovskite solar cells breakthrough
- New applications
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Nanoparticulate titanium dioxide (TiO,)

Properties
 white solid

* insoluble
- stable
* hon-toxic
Source: Thiele Technologies
* cheap
- wide commercial use Titanium Dioxide Applications
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* Absorbs photons with energy > 3.2 eV : - oy Lo

* Corresponds to wavelength < 385 nm (UV)
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Photocatalysis




Mechanism of Photocatalysis

TiO, particle



Utility of photocatalytic pollution treatment

Advantages Disadvantages

- Able to degrade nearly any organic - Light-blocking deposits can make surface
compound, and many inorganic ineffective
compounds

- Some degradation is undesirable, e.g.

* Hydrocarbons : o
plastic substrates, organic binders, etc.

* Highly chlorinated organics
* NO, - Low reaction rates under sunlight

- Able to sterilize surfaces - Process can be expensive due to energy

, _ . consumption of UV lamps for high rates
- Requires no continuous chemical inputs

- Can be powered by UV lamps or by sunlight

- TiO, material is cheap and plentiful




Expanding the spectral window
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Air applications of photocatalysis

- Degradation of VOCs
- NO, > N, or HNO,

- SO, - SO,*

- CO - CO,

- 0; 2 0,

- Deodorization

- Indoor air purification




Solar Photovoltaics




Solar Power Conversion Efficiency (PCE)

Theoretical limit for any solar cell
with a single light-absorbing material:

~33%

Power out (electrical)  Electrical power (W/m?)
Power in (solar) 1000 W/m?

Efficiency =




PV Landscape as of 2012

Crystalline Silicon (c-Si)
* Dominant commercial technology
» Silicon is a very abundant element 25.0%
*  Somewhat expensive to manufacture in required purity
* Requires thick layers (~250 um)

Gallium arsenide “llI-V” tandem
 \Very h!gh—efﬂuency 36.9%
* Very high cost
* Practical only for space applications

Cadmium telluride (CdTe)
* Thin-film (~10 um), low-cost manufacturing
! 16.79
e Similarto c-Siin S/W e-7vk
e Concerns with toxicity of Cd, scarcity of Te

Copper indium gallium selenide (CIGS)
* Thin-film (~10 um), low-cost but challenging to scale-up 20.3%
* Also contains some non-abundant elements (In, Se)

Dye-sensitized solar cell (DSSC)
* Based on nano-TiO, plus organic dye molecules o
. : . : 11.4%
* Radically different principle of operation
e Possibility of very low cost




Crystalline silicon solar cell
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Dye-sensitized solar cell (DSSC)
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Why is it Cheap?

Conduction
Band

Si

[ Valence
Band

- Silicon

* High material purity needed
to avoid recombination

- DSSC

- Relaxed materials requirements
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Perovskite pigments

Researchers tried replacing dye molecules in the DSSC with
pigment particles with the perovskite structure:

Nanoscale
COMMUNICATION

Cite this: Nanoscale, 2011, 3, 4088

www.rsc.org/nanoscale

6.5% efficient perovskite quantum-dot-sensitized solar cellt

Jeong-Hyeok Im, Chang-Ryul Lee, Jin-Wook Lee, Sang-Won Park and Nam-Gyu Park®

efficiency among the reported QD-sensitized solar cells. It is necessary

to mention, however, that the stability of the perovskite (CH;NHS) methylammonium (MA) lead iodide
Pbl; QD-sensitized solar cell under continued irradiation is approx- = CH;NH;Pbl,

imately 10 min (about 80% degradation) because QD tends to be = MAPDbI,,

dissolved gradually into the redox electrolyte. Studies to improve where MA = CH;NH,*

long-term stability are under way.




Perovskite solar cell

What about perovskite pigments in the solid-state DSSC?

arLiquid DSSC b> Solid-state DSSC
Glass substrate
Platinum-coated FTO cathode Semitransparent metallic cathode
Liquid electrolyte Solid hole transporter

X

SnO, underlayer

FTO Anode FTO anode

Glass substrate Glass substrate




Perovskite breakthrough

Efficient Hybrid Solar Cells Based ARV
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- Science named the discovery one of the Top 10 Breakthroughs of 2013

- Nature named Henry Snaith one of the 10 notable scientists of 2013




Potential for perovskite-silicon tandem cell
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PV Landscape as of 2017

Record Lab PCE | Record Lab PCE
Technology 2012 2017

Crystalline Silicon (c-Si) 25.0% 26.6%
Gallium arsenide “llI-V” tandem 36.9% 38.8%
Cadmium telluride (CdTe) 16.7% 22.1%
Copper indium gallium selenide (CIGS) 20.3% 22.6%
Dye-sensitized solar cell (DSSC) 11.4% 13.0%
Perovskite 22.1%

Sources: M.A. Green et al., “Solar cell efficiency tables”, Prog. Photovolt: Res. Appl. 25:3 (2017)
NREL “Best Research-Cell Efficiencies” chart, 14 April 2017
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Today’s PV market

About 57* GWp PV module production
in 2015

2010 Thin film
Mono-Si s
Multi-Si

® Fraunhofer ISE

2005

2000

Source: Fraunhofer ISE




PV contribution to world energy

Estimated Renewable Energy Share of Global Electricity Production, End-2015

Non-renewables

76.3% 7

Hydropower

16.6%

Wind

[ N
Bio-power 2.0%
Renewable
electricity
23.7% Solar PV 1 .2%
Geothermal,
CSP and

ocean 0.4%

Based on renewable generating capacity at year-end 2015.
Percentages do not add up internally due to rounding.

R EN21r"";"ET§i“5'f'V
REN21 Renewables 2016 Global Status Report HEARE0
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Alexander G. Agrios, PhD, PE
agrios@uconn.edu
860-486-1350
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Best Research-Cell Efficiencies
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“Generations” of PV technologies

Groups techs into three
“generations”:

- 1: Si, GaAs
- good efficiency, high cost

* IlI: Thin-film
* lower efficiency, low cost
(note that larger area is needed)

 Ill: The Future
« PCE >SQ limit
* Low cost!
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