Sustainable Infrastructure

September 19, 2013

Jonathan Ford, PE Morris Beacon Design Providence, RI

Conventional Stormwater Management

(peak rate mitigation banished to the backyard!)

Low Impact Development (LID)!!

- Reduce impervious cover
- Prevent impact to natural drainage systems
- Manage water as close to the source as possible
- Preserve natural areas, native vegetation, reduce impact on watershed
- Protect natural drainage pathways
- Utilize less complex, non-structural BMPs
- Create a multi-functional landscape

- RI Design and Installation Standards Manual, 2010

Figure 6-5. The amount of runoff and associated pollutants from a project can be reduced by disconnecting impervious surfaces through the disconnection methods described in Section 6-2.

Claytor, from Rhode Island Stormwater Design and Installation Standards Manual, 2010

EPA Business Case for Smart Growth

Placemaking
Market acceptance & premiums
Demographics
Supply & demand
Marketing

Now how do we build it?

image credit: Chuck Bohl

Material adapted from "Comparative Infrastructure & Material Analysis" under UPA Contract EP-W-05-25 and appears in the working publication "Smart Growth: The Business Opportunity for Developers and Production Builders" under the same contract.

Smart Growth & Conventional Suburban Development

An infrastructure case study completed for the EPA

Comparative infrastructure analysis

Material adapted from "Comparative Infrastructure & Material Analysis" under UPA Contract EP-W-05-25 and appears in the working publication "Smart Growth: The Business Opportunity for Developers and Production Builders" under the same contract.

Comparative infrastructure analysis

Which costs more?

Material adapted from "Comparative Infrastructure & Material Analysis" under UPA Contract EP-W-05-25 and appears in the working publication "Smart Growth: The Business Opportunity for Developers and Production Builders" under the same contract.

Comparative infrastructure analysis

Which costs more?

It depends, but costs are measurable

Material adapted from "Comparative Infrastructure & Material Analysis" under UPA Contract EP-W-05-25 and appears in the working publication "Smart Growth: The Business Opportunity for Developers and Production Builders" under the same contract.

TND A
253 developed acres
800 residential units
Net density per res. acre = 4.6

CSD B

601 developed acres 800 residential units Net density per res. acre = 2.1

Material adapted from "Comparative Infrastructure & Material Analysis" under UPA Contract EP-W-05-25 and appears in the working publication "Smart Growth: The Business Opportunity for Developers and Production Builders" under the same contract.

draft - do not cite or publish

Original scenarios by Dover Kohl & Partners.

CIVIL ENGINEERING, PLANNING, URBAN DESIGN, www.morrisbeacon.com

TND A
253 developed acres
800 residential units
Net density per res. acre = 4.6

CSD C (smaller lot)
384 developed acres
800 residential units
Net density per res. acre = 4.6

Material adapted from "Comparative Infrastructure & Material Analysis" under UPA Contract EP-W-05-25 and appears in the working publication "Smart Growth: The Business Opportunity for Developers and Production Builders" under the same contract.

Original scenarios by Dover Kohl & Partners.

draft - do not cite or publish

CIVIL ENGINEERING, PLANNING, URBAN DESIGN, www.morrisbeacon.com

TND D (transit supportive)
253 developed acres
1410 residential units
Net density (per res. acre) = 8.0

CSD E (smaller lot)
601 developed acres
1410 residential units
Net density (per res. acre) = 4.5

Material adapted from "Comparative Infrastructure & Material Analysis" under UPA Contract EP-W-05-25 and appears in the working publication "Smart Growth: The Business Opportunity for Developers and Production Builders" under the same contract.

Original scenarios by Dover Kohl & Partners.

draft - do not cite or publish

CIVIL ENGINEERING, PLANNING, URBAN DESIGN, www.morrisbeacon.com

Belle Hall: Infrastructure Cost per Residential Unit

Cost/residential unit \$56,538 \$79,318 \$52,339 \$32,507 Residential units used in calculation 801 795 795 1,408 1,	
Residential units used in calculation 801 795 795 1,408 1	\$43,519
	100
Percent Change 40.3% -7.4% 33	.9%

Material adapted from "Comparative Infrastructure & Material Analysis" under UPA Contract EP-W-05-25 and appears in the working publication "Smart Growth: The Business Opportunity for Developers and Production Builders" under the same contract.

Conclusions

- •It's measurable! Measuring infrastructure components of a Smart Growth project is no different than measuring the same in a conventional suburban project
- •Both TND and CSD needs roads, utilities, parking, curb...it's the arrangement of these that can lead to cost efficiencies
- Density, compactness, connectivity, and a mix of uses all tend to make Smart Growth more efficient
- •Infrastructure requirements in Smart Growth communities allow for strategic phasing that can reduce risk and allow incremental changes in product type

Beyond LID: not all impervious area is equal

Material adapted from "Comparative Infrastructure & Material Analysis" under UPA Contract EP-W-05-25 and appears in the working publication "Smart Growth: The Business Opportunity for Developers and Production Builders" under the same contract.

Beyond LID: not all impervious area is equal

LID 2.0

- Not all impervious area is equal
 Plan with the land
 Approximate nature
 - 4. Design to context
 - 5. Leave a simple solution behind

LID 2.0 & Simsbury: Focus Areas

- 1. Design to Context Form-Based Zoning
- 2. Incentives for Projects Located in Compact, Walkable Areas
- 3. Design Checklist
- 4. Planning & Site Design Guidelines
- 5. Operation & Maintenance Lovable Infrastructure

Simsbury Center Code Simsbury Connecticut

ADOPTED: APRIL 04, 2011 | EFFECTIVE: APRIL 15, 2011

SEC. 2.3 SUMMARY OF FRONTAGE REQUIREMENTS

2.3	3.1 Lot	SC-1	SC-2	SC-3	SC-4	SC-5	CIV	0S
Lot	Standards							
A	Area (min)	5,000 sf	3,000 sf	5,000 sf	1,500 sf	1,500 sf	n/a	n/a
$^{\otimes}$	Width (min)	50'	30'	50'	20'	20'	n/a	n/a
Bui	Iding Setbacks							
©	Street setback line (min)	Varies (see regulating plan)	10'					
(D)	Setback, protected district (min)	20'	10'	10'	10'	10'	10'	10'
(D)	Setback, unprotected district (min)	0' or 5'	10'					
2.3	3.2 Placement							
Bui	ld-to							
Ē	Street setback area (min/max)	0' / 15'	0' / 5'	0' / 8'	0' / 12'	0' / 12'	n/a	n/a
(F)	Building width in setback area (min % of lot width)	50%	90%	70%	70%	70%	n/a	n/a
Pai	king Location							
G	Parking setback line (min)	Varies (see regulating plan)	not allowed					
	Setback, protected district (min)	10'	10'	10'	10'	10'	10'	not allowed
	Setback, unprotected district (min)	0' or 5'	not allowed					
Op	en Space							
\oplus	% of open area on the lot (min)	15%	15%	15%	15%	15%	30%	98%

	Table 1.1 – Location-Based Adjustments							
	SC-1	SC-2	SC-3	SC-4	SC-5	CIV	os	Other Zones
Peak Rate	Peak	rate redued for the	ıction pe	100%	100%	110%		
Water Quality	100%	100%	100%	100%	100%	100%	100%	110%
Recharge Volume	75%	50%	50%	75%	50%	75%	100%	110%

Test Sites

Test Site #1: Simscroft Farms

Post-Development Conditions

Post-Development

Total Area 555,440 Impervious Area (sf) 333,234 60.0% Redevelopment credit no

Redevelopment credit no Existing land cover to be verified Location-based credit 50% Simsbury Center Zone SC-5

Test Sites

Layout by Russell Preston

Test Site #1: Simscroft Farms

Post-Development Conditions

	Value	<u>%</u>	Notes
Post-Development			
Total Area	555,440		
Impervious Area (sf)	333,234	60.0%	
Redevelopment credit	no		Existing land cover to be verified
Location-based credit	50%		Simsbury Center Zone SC-5
Office Space (sf)	0		
Residential Units	224		

CIVIL ENGINEERING. PLANNING. URBAN DESIGN. www.morrisbeacon.com

Test Sites

Layout by Russell Preston

Test Site #1: Simscroft Farms

Post-Development Conditions

LEGEND Recharge Water Quality Recharge & Water Quality SR/ST Areas Tree Credit Underground Pipe Pervious Pavement Approximate FEMA Flood Plain

_						
	1.1	У	3.1	у	5.1	у
13	1.2	У	3.2	у	5.2	У
ē	1.3	У	3.3	у	5.3	y*
Criteria	1.4	У	3.4	y*	5.4	у
) (3.5	У	5.5	У
Design	2.1	у				
es	2.2	У	4.1	у	6.1	У
Ã	2.3	У	4.2	y*	6.2	У
8	2.4	У	4.3	y*	6.3	У
gu	2.5	У	4.4	y*	6.4	У
Ξ	2.6	у	4.5	у	6.5	у
H	2.7	y*	4.6	n/a	6.6	у
Planning			4.7	n/a	6.7	У
			4.8	n/a		

Evolution of LID:

Evolution of LID:

Jonathan Ford, PE Principal

Morris Beacon Design Providence, RI

jford@morrisbeacon.com www.morrisbeacon.com twitter: @jonford_MBD