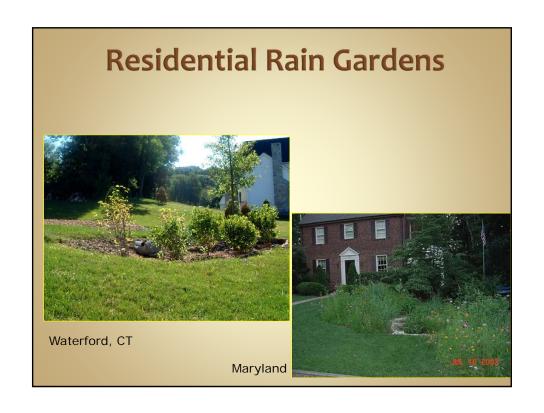
Rain Garden Overview and Design

Classical Magnet School Hartford, CT November 4-5, 2010

Michael Dietz, Ph.D. University of Connecticut CT Nonpoint Education for Municipal Officials Program

What is a rain garden?

- Short answer: a depression in the landscape designed to collect and infiltrate stormwater
- Besides performing this function, they also look really nice

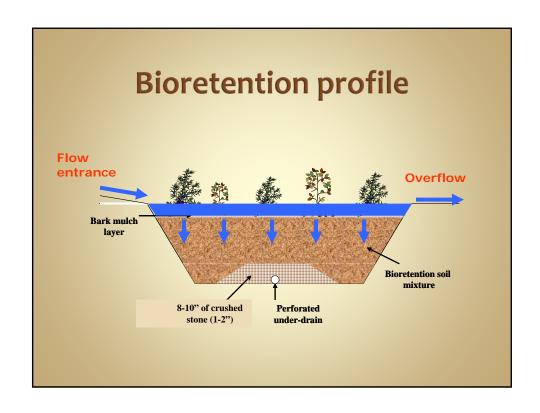

What's going on in there?

- Reduction in stormwater volume
 - Infiltration
 - Evapotranspiration
- Filtration of coarse particles
 - Sediment
 - Bacteria
- Pollutants retained
 - Taken up by plants (nitrogen, phosphorus)
 - Adsorbed to mulch, soils, or organic matter (metals)
 - Broken down by microorganisms and sunlight (hydrocarbons, bacteria)
 - Converted to gaseous form

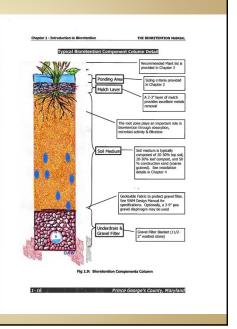
A Word on Terminology...

- **BIORETENTION:** Commercial applications-engineered design, modified soils, usually have underdrains
- Prince George's County, MD
- **RAIN GARDENS**: Home-scale, not typically engineered, use existing soils
 - Wisconsin design manual
 - UConn design manual

Haddam rain garden


Infiltrated 99% of roof runoff!!

http://nemo.uconn.edu/successes/case_studies/haddam_demo/demosite_rain_garden.htm


Bioretention specifics

Installation materials

- Soil mix, underdrain, crushed stone, plants, mulch
- Avoid filter fabric!!
 - Not needed for residential sites
 - For commercial, use nonwoven geotextile only if needed

What about a liner?

- Lining is only needed in very specific applications
- Partial lining where you don't want water to go
- Full lining in "hot spots"
 - Gas stations, industrial facilities, brown field sites
 - Bioretention is just a filter in these cases

Underdrains

- Purpose is to reduce potential for extensive surface ponding
- Bioretention manual recommends underdrains for all residential rain gardens
 May not be necessary
 Make a decision based on site and soils
- Highly recommended for commercial/urban bioretention
- Slotted (ADS) or perforated (PVC) pipe at bottom or just above bottom of bioretention, surrounded by crushed stone/gravel blanket

Underdrains

- Drain to grade (best) or stormwater system (OK)
- **DO NOT** wrap in filter fabric!

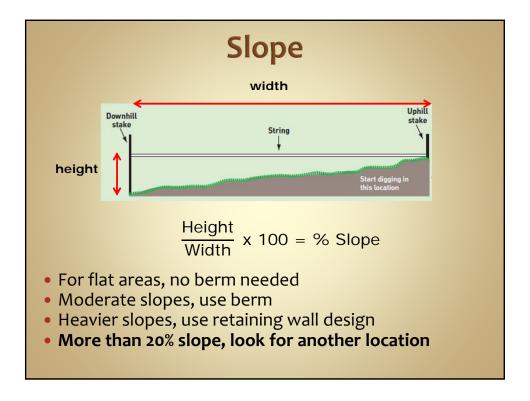
From Bioretention Manual (2009)

Underdrains

Underdrains

- Elevated drain
 - Increases chance of infiltration into native soils
 - Provides good environment for denitrification

From Bioretention Manual (2009)


Sizing and placing a rain garden

Rain garden placement

- More than 10 feet from foundation with basement
- Avoid placing over septic system or close to well
- Avoid placing in wet areas of yard-don't forget, a rain garden IS NOT a water garden!
- Site to most effectively catch storm runoff
- Consider overflow

Important site considerations for bioretention/rain gardens

- Avoid areas with:
 - Shallow (<3 feet) depth to bedrockSeasonal high water table
- Be aware of the infiltration capacity of native soils
- Watch for steep slopes

Different siting applications

- Take water from:
 - Roof
 - Parking lot/road
 - Turf/mixed use

Roof

- Typically intercept gutter downspout leader
 Can pipe, or run over pervious area first

Roof

• Drains to turf, sloped to garden

Parking lots & roads

- Provide forebay or turf filter area for sediment accumulation and cleanout
 - Preserves integrity of garden
 - Easier to maintain

North Carolina. From Traver, et al., 2007

Mixed use

- Can be difficult to figure out watershed and measure areas
- Observe in rain storm
- Break it up into shapes
 - Get help from your student!

Considerations for all types:

- Where flow is concentrated or in a pipe, provide something to break up energy
 - Reduces erosion potential

All types: Overflow

- For bioretention, typically the stormwater system
- For rain gardens, typically adjacent turf or wooded area
 - Avoid concentrating flow-spread it out to reduce erosion potential

Check soils

- Simple percolation test
 - Dig hole 6 inches deep, and fill with water.
 - If there is still water in the hole after 24 hours, the site is not suitable for a rain garden

Soils

Better percolation test:

Steps:

- 1. Dig a hole 12 inches deep by 6 inches in diameter.
- 2. Fill hole with water and let stand until all the water has drained into the ground.
- 3. Refill the empty hole with water again. Measure the depth of water with a ruler.
- 4. Check the depth of water with a ruler every hour for 4 hours.
- 5. Calculate how many inches of water drained per hour.
 - ~1.5 inches of water draining per hour is ideal

Soils

- My infiltration rate is only 0.8 inches per hour... will it still work?
 - YES, with some simple amendments
- My infiltration rate is only 0.5 inches per hour... will it still work?
 - Perhaps... but find out why

Bioretention soil mix

- 50-60% sand
- 20-30% topsoil
 - Low clay content
- 20-30% **leaf** compost
 - Low phosphorus
- For a rain garden, sandy loam, loamy sand, loam soils usually OK as is

Source: The Bioretention Manual (PGC, 2009)

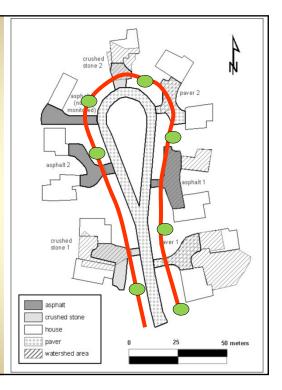
Soils

- Ball test: Roll moistened soil into a ball in hand and see how it forms
 - Hard ball Clay/Silt soil
 - Soft ball Loamy soil
 - No ball Sandy soil

Soil Ribbon Test

- Ribbons less than 1"
 - Feels gritty = coarse texture (sandy) soil
 - Not gritty feeling = medium texture soil high in silt
- Ribbons 1-2"
 - Feels gritty = medium texture soil
 - Not gritty feeling = fine texture soil
- Ribbons greater than 2" = fine texture (clayey) soil

Soils


- Send sample to county Extension Office for sand/silt/clay and/or nutrient analysis
- Loamy soils best, but others can be used with amendments

Soils

- What if the texture is OK, but the soil doesn't drain?
- High water table
 - Pick a different site
- Compaction-the silent killer of rain gardens...
 - New construction especially prone

Site preparation

- AVOID COMPACTION!!!
- Compacted soil will cause a rain garden or bioretention area to fail
- If it is highly compacted, need to remove, or loosen and aerate

Important factors with bioretention

• SOIL COMPACTION before, during construction

Soil Amendments

- For compaction, loosen up and remove some of the compacted soil, and replace with sand/compost mixture
- For clay soils:
 - Make garden larger and shallower, and amend with sand and some compost
- For sandy soils:
 - Amend with compost to slow down the infiltration

Sizing

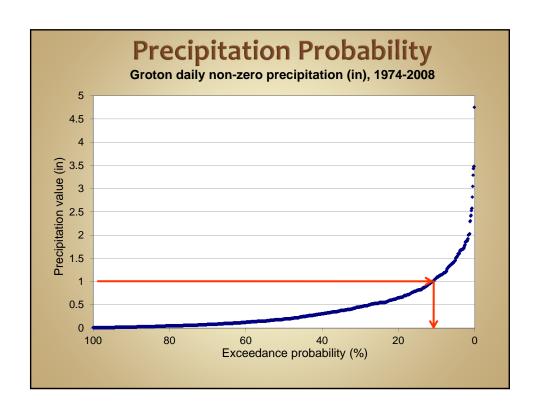
How Big Should it Be?

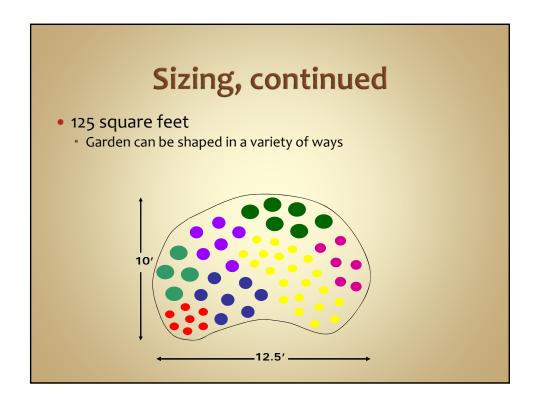
- Simple method
 - Sized to store 1 inch of runoff from 100% impervious watersheds
- Bioretention Manual method
 - Based on 1 inch storage, but can be used on mixed use watersheds

Simple Sizing • Calculate area of roof feeding to garden 30 ft

Sizing, continued

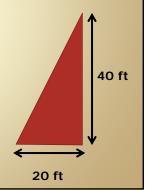
- 50 feet x 30 feet = 1500 square feet
- 1500 feet / 2 = 750 square feet
 - This is because only half the roof contributes to the garden
- 750 square feet / 6 = 125 square feet
 - This just sizes the garden to hold 1 inch of water from the roof in a 6 inch deep rain garden


Why 1 inch?


- In the East and Midwest, around 90% of storms are 1" or less
- Wisconsin design guide
- UConn design guide
- Bioretention manual

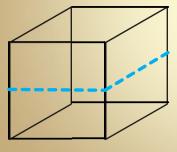

Is it really that big of a deal? 1 inch isn't much, right?

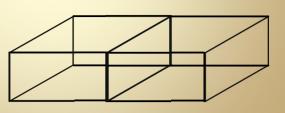
Let's see how Google sees the world



School example

- Since watershed is 100% impervious, use simple method
- Divide total area by 6
 - Gives rain garden size, with 6" ponding depth
- 2394 ft²/6 = 399 ft² (say 400 ft²)
- Area of a triangle?
 - ½ x base x height




Bioretention Manual Method

- Based on "Water Quality Volume"
 - 1 inch
- Use equation $WQ_{v} = [(P)(R_v)(A) / 12]$
 - P= 1.0 inch
 - $R_v = 0.05 + 0.009(1)$
 - I=Percent impervious (1-100)
 - A=Total watershed area (square feet)

Bioretention manual method

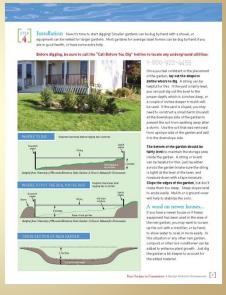
- Gives volume in cubic feet
- For 6" ponding depth, double the size

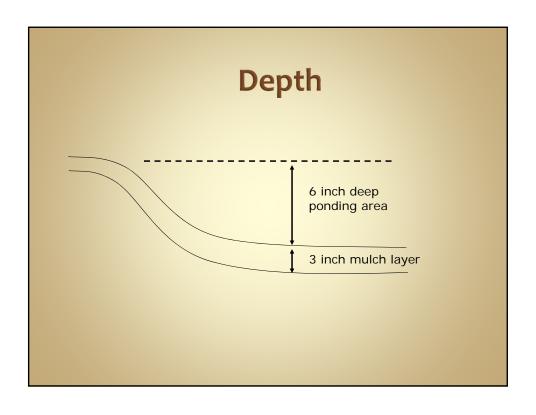
A bit more complicated... (but not impossible!)

- Grass: 8694 ft²
 Sidewalk: 1914 ft²
- Total watershed area: 10,608 ft²
- Hints:
 - Find out what percent of watershed is impervious
 - Use equation $WQ_v = [(P)(R)(A) / 12]$
 - P= 1.0 inch
 - R= 0.05 + 0.009(I)
 - I=Percent impervious (1-100)
 - A=Total watershed area (square feet)
 - Convert to square feet, 6 inches deep

Solution

- Grass: 8694 ft²
 Sidewalk: 1914 ft²
- Total watershed area: 10,608 ft²
- Percent impervious:
 - (1914 ft² / 10,608 ft²)*100 = 18%, so I=18
- P= 1.0 inch
- $R=0.05 + [0.009 \times (18)] = 0.212$
- $WQ_v = (1 \times 0.212 \times 10,608) / 12 = 0$
- 187 ft² (12 inches deep)
- Multiply by 2 (for 6 inches deep) = 375 ft²


Let's get digging!


Installation

- Call hotline to locate underground utilities (at least 2 days in advance) 1-800-922-4455 or 811
- Mark area to be dug
- Smaller gardens can be dug by hand (friends+beer=rain garden), or equipment can be rented for larger gardens

Installation, continued

- Dig out 8-9 inches of soil, keeping the bottom fairly level
 - A string or board can be used as a guide
 - Berm the bottom end, if necessary
 - Provide a gradual slope to the sides
 - Typical ponding depth is 4-8 inches (aim for 6 inches)

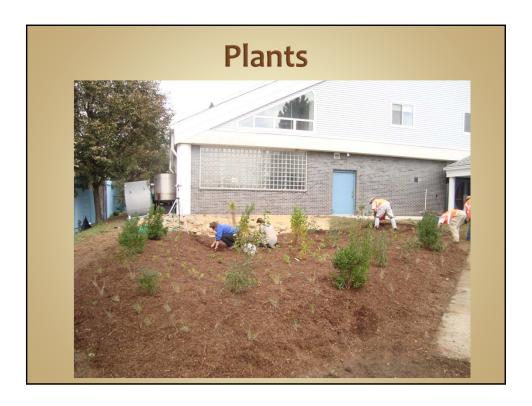
Bioretention excavation

Avoid compaction/sealing of bottom with bucket

Erosion

- Don't allow runoff from an open, unstabilized construction site to enter the garden
 • Surface of bioretention will become clogged

Important factors with bioretention


Make sure storage depth is correct at installation

Planting See the UConn or Rutgers publications for plants to use in this area I the total confidence of the proof of of the

Plants

- Native or well-adapted non-natives
- Plants that like wet feet, but can tolerate extended dry periods
- NOT wetland plants!
- Can use different plantings for different parts of rain garden

Mulch

- Best is aged, shredded hardwood bark mulch
 About 3 inches in depth
- NOT pine bark nuggets!They float

A well-installed bioretention area...

- Has open flow paths, overflow and an adequately sized storage area
- Has proper materials installed
- Has NON-COMPACTED soils!
- ☑ Is only used after the surrounding site is stabilized
- Has proper plantings/ground cover
- Has a provision for short term care (watering), and in arid climates irrigation

References of interest:

NEMO

http://www.nemo.uconn.edu

Low Impact Development

- http://epa.gov/regiono1/topics/water/lid.html
- http://www.lowimpactdevelopment.org/

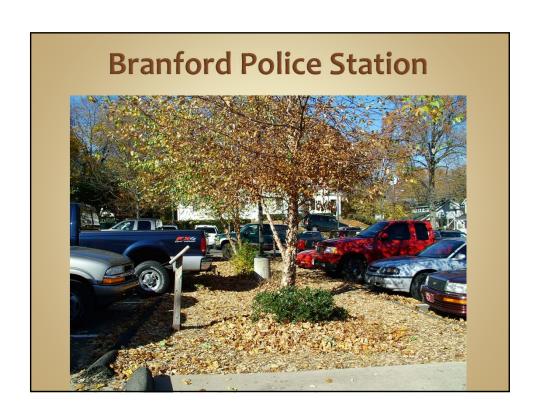
GreenScapes New England-

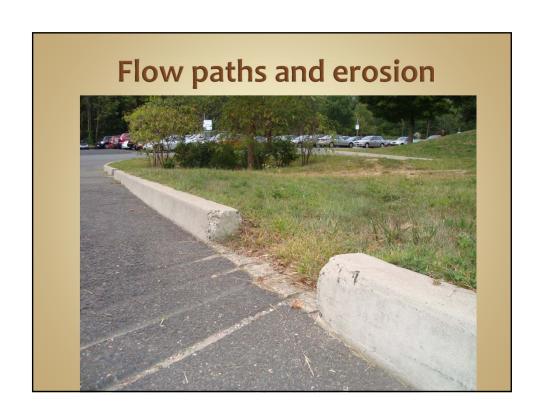
http://epa.gov/regiono1/topics/waste/greenscapes.html

Rain Gardens

- http://www.raingardennetwork.com/
- http://www.raingardens.org/Index.php
- http://www.dnr.state.wi.us/runoff/rg/

Step 6: Maintenance


- Similar to other landscaped areas
 - Yearly mulch, if desired
 - Prune plants, if desired
 - Irrigate/water as necessary
- Sediment removal if required
- MOST IMPORTANTLY: Maintain flow paths and storage area


Maintenance (bioretention)

- Flow paths and storage
- Watch for sediment accumulation

Any questions?