79 Elm Street • Hartford, CT 06106-5127 www.ct.gov/deep Affirmative Action/Equal Opportunity Employer # **Factsheet: City of Ansonia Water Quality and Stormwater Summary** This document was created for each town that has submitted monitoring data under the current Small Municipal Separate Storm Sewer System (MS4) General Permit. What follows is information on how stormwater can affect water quality in streams and rivers and a summary of data submitted by your town. This factsheet is intended to help you interpret your monitoring results and assist you in compliance with the MS4 program. #### Water Quality in Connecticut Surface waters are important resources that support numerous uses, including water supply, recreation, fishing, shellfishing and sustaining aquatic life. Water quality conditions needed to support these uses are identified within the Connecticut Water Quality Standards (WQS). In order to protect and restore these uses, we need acceptable environmental conditions (physical, chemical and biological) to be present within surface waters. To assess and track water quality conditions, CT DEEP conducts monitoring across the State. The data is synthesized into a biennial state water quality report called the Integrated Water Quality Report. Currently, specific water quality monitoring in the state encompasses about 50% of rivers, 47% of lakes, and 100% of estuary/coastline. In addition, CT DEEP may have information about certain land uses or discharges which could indicate a potential for water quality to be impacted, even if the waterbody has not been fully monitored and assessed. To find more detailed information on water quality in your town, please see the Integrated Water Quality Report (IWQR) on the CT DEEP website at www.ct.gov/deep/iwqr. Information on water quality within your town is also presented on the maps included in this fact sheet. # Impacts of Impervious Cover on Water Quality Impervious cover (IC) refers to hard surfaces across the landscape such as roads, sidewalks, parking lots and roofs. Studies have focused on the amount of hard surfaces to evaluate the impacts of stormwater runoff from these hard surfaces on water quality and found that IC affects both the quantity and quality of stormwater. IC forces rain to runoff the land, carrying pollutants quickly and directly to lakes and streams instead of soaking into the ground and being filtered by the soil. For more information on impervious cover, please see the CT DEEP web page www.ct.gov/deep/imperviouscoverstudies and EPA's web page www.epa.gov/caddis/ssr-urb-is1.html. In general, the higher the percentage of IC in a watershed, the poorer the surface water quality. Research in Connecticut strongly suggests that aquatic life will be harmed when the IC within a watershed exceeds 12%. Stormwater pollution from IC is a likely cause of impairment for these waterbodies. # City of Ansonia: Impervious Cover Data This chart shows the amount of area within your town that contains IC. Data is grouped by acres and percent IC. While all levels of IC can contribute stormwater to streams, it is important to note that land with IC greater than 12% in town is likely to be contributing enough stormwater to streams to have a negative impact on water quality. Towns should aim to make stormwater improvements in areas with IC greater than 12% in an effort to reduce the amount of stormwater pollution reaching surface waters which will protect and improve water quality. For more information on areas of impervious cover within your town, please see the maps at the back of this factsheet. Amounts of Impervious Cover within the City of Ansonia #### **Pollution Reduction** Waterbodies often can handle a certain amount of pollutants and still maintain good water quality. However, impaired waterbodies have too much pollution impacting their water quality and therefore the streams do not support all uses for the waterbody. Total Maximum Daily Loads (TMDLs) are pollution reduction budgets developed for impaired waterbodies in order to meet water quality. If the pollution budget is achieved through the recommended pollution reduction measures, then the waterbody is expected to meet water quality. CT DEEP also supports impaired waters restoration through watershed based plans (www.ct.gov/deep/watershed) which provide more specific non-point source pollution control measures. The following TMDLs or pollution reduction strategies have been developed and apply to areas within your town. TMDLs or Strategies Applicable to the City of Ansonia | Name of TMDL or Strategy | Pollutant | Waterbody
Name | Link | |--|------------|---|---| | Statewide
Bacteria TMDL | Bacteria | Housatonic River / Lake Zoar / Lake Housatonic / Curtiss Brook | www.ct.gov/deep/lib/deep/water/tmdl/statewideb
acteria/housatonicriver6000.pdf | | Statewide
Bacteria TMDL | Bacteria | Naugatuck River | www.ct.gov/deep/lib/deep/water/tmdl/statewideb
acteria/naugatuckriverhockanumbrook6900.pdf | | Statewide
Bacteria TMDL | Bacteria | Wepawaug
River | www.ct.gov/deep/lib/deep/water/tmdl/statewideb
acteria/wepawaugriver5307.pdf | | A TMDL Analysis
for Recreational
Uses of the
Naugatuck River
Regional Basin | Bacteria | Naugatuck River
/ Steele Brook /
Great Brook /
Mad River / Hop
Brook / Long
Meadow Pond
Brook | www.ct.gov/deep/lib/deep/water/tmdl/tmdl_final/naugatucktmdl_final.pdf | | A TMDL Analysis
to Achieve
Water Quality
Standards for
Dissolved
Oxygen in Long
Island Sound | Nitrogen | Long Island
Sound and
contributing
waterbodies | www.ct.gov/deep/lib/deep/water/lis_water_quality
/nitrogen_control_program/tmdl.pdf | | Northeast
Regional
Mercury TMDL | Mercury | All CT Inland waters | www.ct.gov/deep/lib/deep/water/tmdl/tmdl_final/
ne_hg_tmdl.pdf | | Interim
Phosphorus
Reduction
Strategy | Phosphorus | Certain CT
Inland waters | www.ct.gov/deep/lib/deep/water/water_quality_st
andards/p/interimmgntphosstrat_042614.pdf | For more information on these TMDLs or strategies please go to our website www.ct.gov/deep/tmdl. # **Stormwater Quality Monitoring** Regular monitoring for targeted pollutants in stormwater provides an indication of potential for water quality impacts and helps identify sources and unlawful discharges. Annual monitoring at 6 locations from different areas of town has been a requirement of the MS4 permit since 2004. CT DEEP uses that information to evaluate the quality of stormwater and the potential for impacts to surface waters as well as to make sure that stormwater is managed properly. Below are 5 graphs tracking stormwater results submitted by your town for 5 parameters reported under the current MS4 General Permit. The results of each stormwater test submitted to CT DEEP by your town is shown. Individual sample results are shown in grey while the average of the samples collected on a particular day is shown in blue, with a line connecting the averages for the various sample dates. The bars show the statistical range of samples for each day with the red squares showing results which are considered to be outliers, that is, very different from the other samples collected on that day. The chart on the graph lists the sample dates and some basic statistics: | Statistic | Description | |-----------------------------|---| | N | Number of stormwater samples collected on that date | | Mean | Average of the results reported for that sample date | | Standard Deviation (StdDev) | A measure of the variability of the results for the sample date | | Minimum | The lowest sample result for the sample date | | Maximum | The highest sample result for the sample date | #### Bacteria Escherichia coli (E. coli) is a bacteria that lives in the intestines of humans and other warmblooded animals and is used to indicate the presence of fecal matter in surface waters. Some strains of *E. coli* and other pathogens found in fecal material cause serious illness in people coming in contact with it. For this reason, high amounts of bacteria will cause authorities to close beaches for swimming. Bacteria is measured as the number of colony forming units, or CFU, per 100 ml of water. Any result that was reported as "to numerous to count" is included on the chart as 800,000 CFU/100 mL. # Results of annual stormwater monitoring under MS4 permit for *E.coli* (CFU/ 100 mL of sample) City of Ansonia To support recreational uses of surface waters, the CT DEEP Water Quality Standards indicate that the average amount of *E. coli* found in a freshwater water body should be less than 126 CFU/100 mL and that a single sample tested for *E. coli* should be less than 235 CFU/100 mL at a designated swimming area and less than 410 CFU/100 mL in other areas. Monitoring for *E. coli* is currently required in the MS4 permit. Enterococci is another bacteria used to indicate the presence of fecal material in salt water environments. For recreation in salt water the Water Quality Standards indicate that average amount of Enterococci should be less than 35 CFU/100 mL in a designated swimming area and that a single sample tested for Enterococci should be less than 104 CFU/100 mL and in all other areas less than 500 CFU/100 mL. These targets have been included in the statewide bacteria TMDLs. In the Draft MS4 permit, *E.coli* results higher than 235 CFU/100 mL at a
designated swimming area or greater than 410 CFU/100 mL in other areas requires a follow-up investigation. Individual stormwater sample results that exceed the applicable single sample maximum value for bacteria could impact water quality, so the associated outfalls should be evaluated for additional stormwater management. # Total Suspended Solids Total Suspended Solids (TSS) is a measurement of the amount of solids (including sand and silt) found in the stormwater sample. High concentrations of TSS can lower water quality in the receiving stream by transporting various pollutants to the waterbody where they can directly affect aquatic life or affect aquatic life by absorbing light, reducing photosynthesis, and by making the water warmer. TSS can also clog fish gills and smother fish eggs and suffocate the organisms that fish eat. TSS comes from erosion and is found in agricultural, urban and industrial runoff. TSS can be reduced by protecting land from erosion and allowing stormwater time to settle before discharging to surface waters. Results of annual stormwater monitoring under the MS4 general permit for TSS (mg/L) City of Ansonia Currently, there is not a water quality based target for TSS in stormwater but TSS is a general indicator of water quality and, lower amounts of TSS are better. For comparison purposes, the average MS4 stormwater result reported for TSS by all towns covered by this permit is 48 mg/L. Areas within your town which have elevated TSS may be places to consider additional stormwater management efforts. ## Total Nitrogen Nitrogen is an important nutrient in marine and estuarine waters such as Long Island Sound, as well as a concern in fresh water lakes and rivers. High amounts of nitrogen can lead to excessive growth of water plants and algae which then reduces the amount of oxygen available to living things in these waters. Unlawful discharges, animal waste, failing septic systems, leaves, litter and fertilizers are common sources of high nitrogen in stormwater. Responsible use of fertilizers, maintaining septic systems and proper disposal of pet waste will help reduce nitrogen in stormwater. Results of annual stormwater monitoring under MS4 general permit for total nitrogen (Total N mg/L) <u>City of Ansonia</u> The TMDL for Long Island Sound requires a 10% reduction of nitrogen in stormwater discharges to prevent low oxygen conditions in Long Island Sound. Each town should be working to reduce the amount of nitrogen in their stormwater to address this issue. Under the current draft MS4 permit, any result for total nitrogen greater than 2.5 mg/L will require a follow-up investigation. Areas within your town which have elevated nitrogen may be places to consider additional stormwater management activities. # **Total Phosphorus** Phosphorus is an important nutrient necessary for growth in plants and animals in freshwater. Too much phosphorus in the water can throw off the balance of aquatic ecosystems causing excessive growth of water plants and algae blooms, which reduces the amount of oxygen in the water, potentially harming the fish. Sometimes these algae blooms can contain toxic forms of algae which are harmful to people and animals that come into contact with it. Sources of high phosphorus can be unlawful discharges, fertilizers, litter, leaves, erosion and animal waste. Results of annual stormwater monitoring under MS4 permit for total phosphorus (mg/L) City of Ansonia CT DEEP is actively working with many towns to reduce the amount of phosphorus reaching Connecticut's streams and rivers. Under the current draft MS4 permit, a total phosphorus result greater than 0.3 mg/L will require a follow-up investigation. Areas of your town that have elevated levels of phosphorus in the stormwater are good places to develop additional stormwater controls. ## **Turbidity** Turbidity measures the clarity of the stormwater sample. It measures how much material (soil, algae, pollution, microbes etc.) is suspended in the sample. High turbidity lowers the water quality of a surface water by blocking sunlight for the plants and makes food harder for the fish to find and may be an indication of a higher amounts of other pollution in the water. Surface waters with high turbidity are visually less appealing for recreational use. High turbidity can be caused by erosion, failing septic systems, decaying plants or animals, and excessive algae growth. Turbidity is reported in Nephelometric Turbidity Units (NTU) which is related to how easily light passes through the water sample. Results of annual stormwater monitoring under MS4 permit for turbidity (NTU) <u>City of Ansonia</u> The Water Quality Standards have a criterion that indicates turbidity should not to exceed 5 NTU above ambient levels. In the draft MS4 permit, a turbidity result greater than 5 NTU over instream conditions will require a follow-up investigation. While there is not a fixed statewide criterion for turbidity, lower results are better for the health of the surface waters in town. Areas with higher levels of turbidity in stormwater would be a good place to develop additional stormwater controls. ## Town Maps The following maps were created to show the impervious cover (IC) in your town as well as the water quality in the rivers, streams, lakes and estuaries in and around your town. Impervious Cover on the Town Maps IC is shown in red on the maps. Dark red areas indicate a higher percentage of IC, lighter red areas have less IC, while the grey areas indicate very little or no IC. Water Quality on the Town Maps Separate maps are provided for the different uses of the waterbodies such as Aquatic Life Uses, Recreation, and Shellfishing (in coastal towns). The waterbodies are colored to show the health of the waterbody. Green means that the waterbody meets the water quality requirements to fully support the specified use. Yellow means that water quality is poor and that the specified use is not met. Blue means that there is not enough information to know whether or not water quality is good or bad to support the specified use. Additionally, a small map is provided on the left side of each larger map to show which watersheds are within your town. 79 Elm Street • Hartford, CT 06106-5127 www.ct.gov/deep Affirmative Action/Equal Opportunity Employer # **Factsheet: Town of Avon Water Quality and Stormwater Summary** This document was created for each town that has submitted monitoring data under the current Small Municipal Separate Storm Sewer System (MS4) General Permit. What follows is information on how stormwater can affect water quality in streams and rivers and a summary of data submitted by your town. This factsheet is intended to help you interpret your monitoring results and assist you in compliance with the MS4 program. #### Water Quality in Connecticut Surface waters are important resources that support numerous uses, including water supply, recreation, fishing, shellfishing and sustaining aquatic life. Water quality conditions needed to support these uses are identified within the Connecticut Water Quality Standards (WQS). In order to protect and restore these uses, we need acceptable environmental conditions (physical, chemical and biological) to be present within surface waters. To assess and track water quality conditions, CT DEEP conducts monitoring across the State. The data is synthesized into a biennial state water quality report called the Integrated Water Quality Report. Currently, specific water quality monitoring in the state encompasses about 50% of rivers, 47% of lakes, and 100% of estuary/coastline. In addition, CT DEEP may have information about certain land uses or discharges which could indicate a potential for water quality to be impacted, even if the waterbody has not been fully monitored and assessed. To find more detailed information on water quality in your town, please see the Integrated Water Quality Report (IWQR) on the CT DEEP website at www.ct.gov/deep/iwqr. Information on water quality within your town is also presented on the maps included in this fact sheet. #### Impacts of Impervious Cover on Water Quality Impervious cover (IC) refers to hard surfaces across the landscape such as roads, sidewalks, parking lots and roofs. Studies have focused on the amount of hard surfaces to evaluate the impacts of stormwater runoff from these hard surfaces on water quality and found that IC affects both the quantity and quality of stormwater. IC forces rain to runoff the land, carrying pollutants quickly and directly to lakes and streams instead of soaking into the ground and being filtered by the soil. For more information on impervious cover, please see the CT DEEP web page www.ct.gov/deep/imperviouscoverstudies and EPA's web page www.epa.gov/caddis/ssr-urb-is1.html. In general, the higher the percentage of IC in a watershed, the poorer the surface water quality. Research in Connecticut strongly suggests that aquatic life will be harmed when the IC within a watershed exceeds 12%. Stormwater pollution from IC is a likely cause of impairment for these waterbodies. # Town of Avon: Impervious Cover Data This chart shows the amount of area within your town that contains IC. Data is grouped by acres and percent IC. While all levels of IC can contribute stormwater to streams, it is important to note that land with IC greater than 12% in town is likely to be contributing enough stormwater to streams to have a negative impact on water quality. Towns should aim to make stormwater improvements in areas with IC greater than 12% in an effort to reduce the amount of stormwater pollution reaching surface waters which will protect and improve water quality. For more information on areas of impervious cover within your town, please see the maps at the back of this factsheet. Amounts
of Impervious Cover within the Town of Avon # Pollution Reduction Waterbodies often can handle a certain amount of pollutants and still maintain good water quality. However, impaired waterbodies have too much pollution impacting their water quality and therefore the streams do not support all uses for the waterbody. Total Maximum Daily Loads (TMDLs) are pollution reduction budgets developed for impaired waterbodies in order to meet water quality. If the pollution budget is achieved through the recommended pollution reduction measures, then the waterbody is expected to meet water quality. CT DEEP also supports impaired waters restoration through watershed based plans (www.ct.gov/deep/watershed) which provide more specific non-point source pollution control measures. The following TMDLs or pollution reduction strategies have been developed and apply to areas within your town. TMDLs or Strategies Applicable to the Town of Avon | Name of TMDL or Strategy | Pollutant | Waterbody
Name | Link | |--|------------|---|--| | Statewide
Bacteria TMDL | Bacteria | Farmington River (02) / Munniskunk Brook / Owens Brook / Russell Brook / Minister Brook | www.ct.gov/deep/lib/deep/water/tmdl/statewideb
acteria/farmingtonriver4300.pdf | | Statewide
Bacteria TMDL | Bacteria | Thompson
Brook | www.ct.gov/deep/lib/deep/water/tmdl/statewideb acteria/thompsonbrook4316.pdf | | Statewide
Bacteria TMDL | Bacteria | Nod Brook | www.ct.gov/deep/lib/deep/water/tmdl/statewideb
acteria/nodbrook4317.pdf | | Statewide
Bacteria TMDL | Bacteria | North Branch
Park River | www.ct.gov/deep/lib/deep/water/tmdl/statewideb
acteria/nbranchparkriver4404.pdf | | Statewide
Bacteria TMDL | Bacteria | Trout Brook | www.ct.gov/deep/lib/deep/water/tmdl/statewideb
acteria/troutbrook4403.pdf | | A TMDL Analysis
to Achieve
Water Quality
Standards for
Dissolved
Oxygen in Long
Island Sound | Nitrogen | Long Island
Sound and
contributing
watersheds | www.ct.gov/deep/lib/deep/water/lis_water_quality
/nitrogen_control_program/tmdl.pdf | | Northeast
Regional
Mercury TMDL | Mercury | All CT Inland
waters | www.ct.gov/deep/lib/deep/water/tmdl/tmdl_final/
ne_hg_tmdl.pdf | | Interim Phosphorus Reduction Strategy | Phosphorus | Certain CT
Inland waters | www.ct.gov/deep/lib/deep/water/water_quality_st
andards/p/interimmgntphosstrat_042614.pdf | For more information on these TMDLs or strategies please go to our website www.ct.gov/deep/tmdl. # **Stormwater Quality Monitoring** Regular monitoring for targeted pollutants in stormwater provides an indication of potential for water quality impacts and helps identify sources and unlawful discharges. Annual monitoring at 6 locations from different areas of town has been a requirement of the MS4 permit since 2004. CT DEEP uses that information to evaluate the quality of stormwater and the potential for impacts to surface waters as well as to make sure that stormwater is managed properly. Below are 5 graphs tracking stormwater results submitted by your town for 5 parameters reported under the current MS4 General Permit. The results of each stormwater test submitted to CT DEEP by your town is shown. Individual sample results are shown in grey while the average of the samples collected on a particular day is shown in blue, with a line connecting the averages for the various sample dates. The bars show the statistical range of samples for each day with the red squares showing results which are considered to be outliers, that is, very different from the other samples collected on that day. The chart on the graph lists the sample dates and some basic statistics: | Statistic | Description | |-----------------------------|---| | N | Number of stormwater samples collected on that date | | Mean | Average of the results reported for that sample date | | Standard Deviation (StdDev) | A measure of the variability of the results for the sample date | | Minimum | The lowest sample result for the sample date | | Maximum | The highest sample result for the sample date | ## Bacteria Escherichia coli (E. coli) is a bacteria that lives in the intestines of humans and other warmblooded animals and is used to indicate the presence of fecal matter in surface waters. Some strains of *E. coli* and other pathogens found in fecal material cause serious illness in people coming in contact with it. For this reason, high amounts of bacteria will cause authorities to close beaches for swimming. Bacteria is measured as the number of colony forming units, or CFU, per 100 ml of water. Any result that was reported as "to numerous to count" is included on the chart as 800,000 CFU/100 mL. # Results of annual stormwater monitoring under MS4 permit for *E.coli* (CFU/ 100 mL of sample) Town of Avon To support recreational uses of surface waters, the CT DEEP Water Quality Standards indicate that the average amount of *E. coli* found in a freshwater water body should be less than 126 CFU/100 mL and that a single sample tested for *E. coli* should be less than 235 CFU/100 mL at a designated swimming area and less than 410 CFU/100 mL in other areas. Monitoring for *E. coli* is currently required in the MS4 permit. Enterococci is another bacteria used to indicate the presence of fecal material in salt water environments. For recreation in salt water the Water Quality Standards indicate that average amount of Enterococci should be less than 35 CFU/100 mL in a designated swimming area and that a single sample tested for Enterococci should be less than 104 CFU/100 mL and in all other areas less than 500 CFU/100 mL. These targets have been included in the statewide bacteria TMDLs. In the Draft MS4 permit, *E.coli* results higher than 235 CFU/100 mL at a designated swimming area or greater than 410 CFU/100 mL in other areas requires a follow-up investigation. Individual stormwater sample results that exceed the applicable single sample maximum value for bacteria could impact water quality, so the associated outfalls should be evaluated for additional stormwater management. ## Total Suspended Solids Total Suspended Solids (TSS) is a measurement of the amount of solids (including sand and silt) found in the stormwater sample. High concentrations of TSS can lower water quality in the receiving stream by transporting various pollutants to the waterbody where they can directly affect aquatic life or affect aquatic life by absorbing light, reducing photosynthesis, and by making the water warmer. TSS can also clog fish gills and smother fish eggs and suffocate the organisms that fish eat. TSS comes from erosion and is found in agricultural, urban and industrial runoff. TSS can be reduced by protecting land from erosion and allowing stormwater time to settle before discharging to surface waters. Currently, there is not a water quality based target for TSS in stormwater but TSS is a general indicator of water quality and, lower amounts of TSS are better. For comparison purposes, the average MS4 stormwater result reported for TSS by all towns covered by this permit is 48 mg/L. Areas within your town which have elevated TSS may be places to consider additional stormwater management efforts. # Total Nitrogen Nitrogen is an important nutrient in marine and estuarine waters such as Long Island Sound, as well as a concern in fresh water lakes and rivers. High amounts of nitrogen can lead to excessive growth of water plants and algae which then reduces the amount of oxygen available to living things in these waters. Unlawful discharges, animal waste, failing septic systems, leaves, litter and fertilizers are common sources of high nitrogen in stormwater. Responsible use of fertilizers, maintaining septic systems and proper disposal of pet waste will help reduce nitrogen in stormwater. Results of annual stormwater monitoring under MS4 general permit for total nitrogen (Total N mg/L) <u>Town of Avon</u> The TMDL for Long Island Sound requires a 10% reduction of nitrogen in stormwater discharges to prevent low oxygen conditions in Long Island Sound. Each town should be working to reduce the amount of nitrogen in their stormwater to address this issue. Under the current draft MS4 permit, any result for total nitrogen greater than 2.5 mg/L will require a follow-up investigation. Areas within your town which have elevated nitrogen may be places to consider additional stormwater management activities. ## **Total Phosphorus** Phosphorus is an important nutrient necessary for growth in plants and animals in freshwater. Too much phosphorus in the water can throw off the balance of aquatic ecosystems causing excessive growth of water plants and algae blooms, which reduces the amount of oxygen in the water, potentially harming the fish. Sometimes these algae blooms can contain toxic forms of algae which are harmful to people and animals that come into contact with it. Sources of high phosphorus can be unlawful discharges, fertilizers, litter, leaves, erosion and animal waste. Results of annual stormwater monitoring under MS4 permit for total phosphorus (mg/L) Town of Avon CT DEEP is actively working with many towns to reduce the amount of phosphorus reaching Connecticut's streams and rivers. Under the current draft MS4 permit, a total phosphorus result greater than 0.3 mg/L will require a follow-up investigation. Areas of your town that have elevated levels of phosphorus in the stormwater are good places to develop additional stormwater controls. ## **Turbidity** Turbidity measures the clarity of the stormwater sample. It measures how much
material (soil, algae, pollution, microbes etc.) is suspended in the sample. High turbidity lowers the water quality of a surface water by blocking sunlight for the plants and makes food harder for the fish to find and may be an indication of a higher amounts of other pollution in the water. Surface waters with high turbidity are visually less appealing for recreational use. High turbidity can be caused by erosion, failing septic systems, decaying plants or animals, and excessive algae growth. Turbidity is reported in Nephelometric Turbidity Units (NTU) which is related to how easily light passes through the water sample. Results of annual stormwater monitoring under MS4 permit for turbidity (NTU) <u>Town of Avon</u> The Water Quality Standards have a criterion that indicates turbidity should not to exceed 5 NTU above ambient levels. In the draft MS4 permit, a turbidity result greater than 5 NTU over instream conditions will require a follow-up investigation. While there is not a fixed statewide criterion for turbidity, lower results are better for the health of the surface waters in town. Areas with higher levels of turbidity in stormwater would be a good place to develop additional stormwater controls. # Town Maps The following maps were created to show the impervious cover (IC) in your town as well as the water quality in the rivers, streams, lakes and estuaries in and around your town. Impervious Cover on the Town Maps IC is shown in red on the maps. Dark red areas indicate a higher percentage of IC, lighter red areas have less IC, while the grey areas indicate very little or no IC. Water Quality on the Town Maps Separate maps are provided for the different uses of the waterbodies such as Aquatic Life Uses, Recreation, and Shellfishing (in coastal towns). The waterbodies are colored to show the health of the waterbody. Green means that the waterbody meets the water quality requirements to fully support the specified use. Yellow means that water quality is poor and that the specified use is not met. Blue means that there is not enough information to know whether or not water quality is good or bad to support the specified use. Additionally, a small map is provided on the left side of each larger map to show which watersheds are within your town. 79 Elm Street • Hartford, CT 06106-5127 www.ct.gov/deep Affirmative Action/Equal Opportunity Employer # Factsheet: Town of Beacon Falls Water Quality and Stormwater Summary This document was created for each town that has submitted monitoring data under the current Small Municipal Separate Storm Sewer System (MS4) General Permit. What follows is information on how stormwater can affect water quality in streams and rivers and a summary of data submitted by your town. This factsheet is intended to help you interpret your monitoring results and assist you in compliance with the MS4 program. #### Water Quality in Connecticut Surface waters are important resources that support numerous uses, including water supply, recreation, fishing, shellfishing and sustaining aquatic life. Water quality conditions needed to support these uses are identified within the Connecticut Water Quality Standards (WQS). In order to protect and restore these uses, we need acceptable environmental conditions (physical, chemical and biological) to be present within surface waters. To assess and track water quality conditions, CT DEEP conducts monitoring across the State. The data is synthesized into a biennial state water quality report called the Integrated Water Quality Report. Currently, specific water quality monitoring in the state encompasses about 50% of rivers, 47% of lakes, and 100% of estuary/coastline. In addition, CT DEEP may have information about certain land uses or discharges which could indicate a potential for water quality to be impacted, even if the waterbody has not been fully monitored and assessed. To find more detailed information on water quality in your town, please see the Integrated Water Quality Report (IWQR) on the CT DEEP website at www.ct.gov/deep/iwqr. Information on water quality within your town is also presented on the maps included in this fact sheet. #### Impacts of Impervious Cover on Water Quality Impervious cover (IC) refers to hard surfaces across the landscape such as roads, sidewalks, parking lots and roofs. Studies have focused on the amount of hard surfaces to evaluate the impacts of stormwater runoff from these hard surfaces on water quality and found that IC affects both the quantity and quality of stormwater. IC forces rain to runoff the land, carrying pollutants quickly and directly to lakes and streams instead of soaking into the ground and being filtered by the soil. For more information on impervious cover, please see the CT DEEP web page www.ct.gov/deep/imperviouscoverstudies and EPA's web page www.epa.gov/caddis/ssr-urb-is1.html. In general, the higher the percentage of IC in a watershed, the poorer the surface water quality. Research in Connecticut strongly suggests that aquatic life will be harmed when the IC within a watershed exceeds 12%. Stormwater pollution from IC is a likely cause of impairment for these waterbodies. # Town of Beacon Falls: Impervious Cover Data This chart shows the amount of area within your town that contains IC. Data is grouped by acres and percent IC. While all levels of IC can contribute stormwater to streams, it is important to note that land with IC greater than 12% in town is likely to be contributing enough stormwater to streams to have a negative impact on water quality. Towns should aim to make stormwater improvements in areas with IC greater than 12% in an effort to reduce the amount of stormwater pollution reaching surface waters which will protect and improve water quality. For more information on areas of impervious cover within your town, please see the maps at the back of this factsheet. Amounts of Impervious Cover within the Town of Beacon Falls #### Pollution Reduction Waterbodies often can handle a certain amount of pollutants and still maintain good water quality. However, impaired waterbodies have too much pollution impacting their water quality and therefore the streams do not support all uses for the waterbody. Total Maximum Daily Loads (TMDLs) are pollution reduction budgets developed for impaired waterbodies in order to meet water quality. If the pollution budget is achieved through the recommended pollution reduction measures, then the waterbody is expected to meet water quality. CT DEEP also supports impaired waters restoration through watershed based plans (www.ct.gov/deep/watershed) which provide more specific non-point source pollution control measures. The following TMDLs or pollution reduction strategies have been developed and apply to areas within your town. TMDLs or Strategies Applicable to the Town of Beacon Falls | Name of TMDL or Strategy | Pollutant | Waterbody
Name | Link | |--|------------|---|---| | Statewide
Bacteria TMDL | Bacteria | Naugatuck River
/ Hockanum
Brook | www.ct.gov/deep/lib/deep/water/tmdl/statewideb
acteria/naugatuckriverhockanumbrook6900.pdf | | A TMDL Analysis
for Recreational
Uses of the
Naugatuck River
Regional Basin | Bacteria | Naugatuck River
/ Steele Brook /
Great Brook /
Mad River / Hop
Brook / Long
Meadow Pond
Brook | www.ct.gov/deep/lib/deep/water/tmdl/tmdl_final/
naugatucktmdl_final.pdf | | A TMDL Analysis
to Achieve
Water Quality
Standards for
Dissolved
Oxygen in Long
Island Sound | Nitrogen | Long Island
Sound and
contributing
watersheds | www.ct.gov/deep/lib/deep/water/lis water quality /nitrogen control program/tmdl.pdf | | Northeast
Regional
Mercury TMDL | Mercury | All CT Inland
waters | www.ct.gov/deep/lib/deep/water/tmdl/tmdl final/
ne hg tmdl.pdf | | Interim Phosphorus Reduction Strategy | Phosphorus | Certain CT
Inland waters | www.ct.gov/deep/lib/deep/water/water_quality_st
andards/p/interimmgntphosstrat_042614.pdf | For more information on these TMDLs or strategies please go to our website $\underline{www.ct.gov/deep/tmdl}$. ## **Stormwater Quality Monitoring** Regular monitoring for targeted pollutants in stormwater provides an indication of potential for water quality impacts and helps identify sources and unlawful discharges. Annual monitoring at 6 locations from different areas of town has been a requirement of the MS4 permit since 2004. CT DEEP uses that information to evaluate the quality of stormwater and the potential for impacts to surface waters as well as to make sure that stormwater is managed properly. Below are 5 graphs tracking stormwater results submitted by your town for 5 parameters reported under the current MS4 General Permit. The results of each stormwater test submitted to CT DEEP by your town is shown. Individual sample results are shown in grey while the average of the samples collected on a particular day is shown in blue, with a line connecting the averages for the various sample dates. The bars show the statistical range of samples for each day with the red squares showing results which are considered to be outliers, that is, very different from the other samples collected on that day. The chart on the graph lists the sample dates and some basic statistics: | Statistic | Description | |-----------------------------|---| | N | Number of stormwater samples
collected on that date | | Mean | Average of the results reported for that sample date | | Standard Deviation (StdDev) | A measure of the variability of the results for the sample date | | Minimum | The lowest sample result for the sample date | | Maximum | The highest sample result for the sample date | #### Bacteria Escherichia coli (E. coli) is a bacteria that lives in the intestines of humans and other warmblooded animals and is used to indicate the presence of fecal matter in surface waters. Some strains of *E. coli* and other pathogens found in fecal material cause serious illness in people coming in contact with it. For this reason, high amounts of bacteria will cause authorities to close beaches for swimming. Bacteria is measured as the number of colony forming units, or CFU, per 100 ml of water. Any result that was reported as "to numerous to count" is included on the chart as 800,000 CFU/100 mL. # Results of annual stormwater monitoring under MS4 permit for *E.coli* (CFU/ 100 mL of sample) Town of Beacon Falls To support recreational uses of surface waters, the CT DEEP Water Quality Standards indicate that the average amount of *E. coli* found in a freshwater water body should be less than 126 CFU/100 mL and that a single sample tested for *E. coli* should be less than 235 CFU/100 mL at a designated swimming area and less than 410 CFU/100 mL in other areas. Monitoring for *E. coli* is currently required in the MS4 permit. Enterococci is another bacteria used to indicate the presence of fecal material in salt water environments. For recreation in salt water the Water Quality Standards indicate that average amount of Enterococci should be less than 35 CFU/100 mL in a designated swimming area and that a single sample tested for Enterococci should be less than 104 CFU/100 mL and in all other areas less than 500 CFU/100 mL. These targets have been included in the statewide bacteria TMDLs. In the Draft MS4 permit, *E.coli* results higher than 235 CFU/100 mL at a designated swimming area or greater than 410 CFU/100 mL in other areas requires a follow-up investigation. Individual stormwater sample results that exceed the applicable single sample maximum value for bacteria could impact water quality, so the associated outfalls should be evaluated for additional stormwater management. ## Total Suspended Solids Total Suspended Solids (TSS) is a measurement of the amount of solids (including sand and silt) found in the stormwater sample. High concentrations of TSS can lower water quality in the receiving stream by transporting various pollutants to the waterbody where they can directly affect aquatic life or affect aquatic life by absorbing light, reducing photosynthesis, and by making the water warmer. TSS can also clog fish gills and smother fish eggs and suffocate the organisms that fish eat. TSS comes from erosion and is found in agricultural, urban and industrial runoff. TSS can be reduced by protecting land from erosion and allowing stormwater time to settle before discharging to surface waters. Currently, there is not a water quality based target for TSS in stormwater but TSS is a general indicator of water quality and, lower amounts of TSS are better. For comparison purposes, the average MS4 stormwater result reported for TSS by all towns covered by this permit is 48 mg/L. Areas within your town which have elevated TSS may be places to consider additional stormwater management efforts. ## Total Nitrogen Nitrogen is an important nutrient in marine and estuarine waters such as Long Island Sound, as well as a concern in fresh water lakes and rivers. High amounts of nitrogen can lead to excessive growth of water plants and algae which then reduces the amount of oxygen available to living things in these waters. Unlawful discharges, animal waste, failing septic systems, leaves, litter and fertilizers are common sources of high nitrogen in stormwater. Responsible use of fertilizers, maintaining septic systems and proper disposal of pet waste will help reduce nitrogen in stormwater. Results of annual stormwater monitoring under MS4 general permit for total nitrogen (Total N mg/L) Town of Beacon Falls The TMDL for Long Island Sound requires a 10% reduction of nitrogen in stormwater discharges to prevent low oxygen conditions in Long Island Sound. Each town should be working to reduce the amount of nitrogen in their stormwater to address this issue. Under the current draft MS4 permit, any result for total nitrogen greater than 2.5 mg/L will require a follow-up investigation. Areas within your town which have elevated nitrogen may be places to consider additional stormwater management activities. ## **Total Phosphorus** Phosphorus is an important nutrient necessary for growth in plants and animals in freshwater. Too much phosphorus in the water can throw off the balance of aquatic ecosystems causing excessive growth of water plants and algae blooms, which reduces the amount of oxygen in the water, potentially harming the fish. Sometimes these algae blooms can contain toxic forms of algae which are harmful to people and animals that come into contact with it. Sources of high phosphorus can be unlawful discharges, fertilizers, litter, leaves, erosion and animal waste. CT DEEP is actively working with many towns to reduce the amount of phosphorus reaching Connecticut's streams and rivers. Under the current draft MS4 permit, a total phosphorus result greater than 0.3 mg/L will require a follow-up investigation. Areas of your town that have elevated levels of phosphorus in the stormwater are good places to develop additional stormwater controls. ## **Turbidity** Turbidity measures the clarity of the stormwater sample. It measures how much material (soil, algae, pollution, microbes etc.) is suspended in the sample. High turbidity lowers the water quality of a surface water by blocking sunlight for the plants and makes food harder for the fish to find and may be an indication of a higher amounts of other pollution in the water. Surface waters with high turbidity are visually less appealing for recreational use. High turbidity can be caused by erosion, failing septic systems, decaying plants or animals, and excessive algae growth. Turbidity is reported in Nephelometric Turbidity Units (NTU) which is related to how easily light passes through the water sample. Results of annual stormwater monitoring under MS4 permit for turbidity (NTU) Town of Beacon Falls The Water Quality Standards have a criterion that indicates turbidity should not to exceed 5 NTU above ambient levels. In the draft MS4 permit, a turbidity result greater than 5 NTU over instream conditions will require a follow-up investigation. While there is not a fixed statewide criterion for turbidity, lower results are better for the health of the surface waters in town. Areas with higher levels of turbidity in stormwater would be a good place to develop additional stormwater controls. # Town Maps The following maps were created to show the impervious cover (IC) in your town as well as the water quality in the rivers, streams, lakes and estuaries in and around your town. Impervious Cover on the Town Maps IC is shown in red on the maps. Dark red areas indicate a higher percentage of IC, lighter red areas have less IC, while the grey areas indicate very little or no IC. Water Quality on the Town Maps Separate maps are provided for the different uses of the waterbodies such as Aquatic Life Uses, Recreation, and Shellfishing (in coastal towns). The waterbodies are colored to show the health of the waterbody. Green means that the waterbody meets the water quality requirements to fully support the specified use. Yellow means that water quality is poor and that the specified use is not met. Blue means that there is not enough information to know whether or not water quality is good or bad to support the specified use. Additionally, a small map is provided on the left side of each larger map to show which watersheds are within your town. 79 Elm Street • Hartford, CT 06106-5127 www.ct.gov/deep Affirmative Action/Equal Opportunity Employer # **Factsheet: Town of Berlin Water Quality and Stormwater Summary** This document was created for each town that has submitted monitoring data under the current Small Municipal Separate Storm Sewer System (MS4) General Permit. What follows is information on how stormwater can affect water quality in streams and rivers and a summary of data submitted by your town. This factsheet is intended to help you interpret your monitoring results and assist you in compliance with the MS4 program. #### Water Quality in Connecticut Surface waters are important resources that support numerous uses, including water supply, recreation, fishing, shellfishing and sustaining aquatic life. Water quality conditions needed to support these uses are identified within the Connecticut Water Quality Standards (WQS). In order to protect and restore these uses, we need acceptable environmental conditions (physical, chemical and biological) to be present within surface waters. To assess and track water quality conditions, CT DEEP conducts monitoring across the State. The data is synthesized into a biennial state water quality report called the Integrated Water Quality Report. Currently, specific water quality monitoring in the state encompasses about 50% of rivers, 47% of lakes, and 100% of estuary/coastline. In addition, CT DEEP may have information about certain land uses or discharges which could indicate a potential for water quality to be impacted, even if the waterbody has not been fully monitored and assessed. To find more detailed information on water quality in your town, please see the Integrated Water Quality Report (IWQR) on the CT DEEP website at www.ct.gov/deep/iwqr. Information on water quality within your town is also presented on the maps included in this fact sheet. #### Impacts of Impervious Cover on
Water Quality Impervious cover (IC) refers to hard surfaces across the landscape such as roads, sidewalks, parking lots and roofs. Studies have focused on the amount of hard surfaces to evaluate the impacts of stormwater runoff from these hard surfaces on water quality and found that IC affects both the quantity and quality of stormwater. IC forces rain to runoff the land, carrying pollutants quickly and directly to lakes and streams instead of soaking into the ground and being filtered by the soil. For more information on impervious cover, please see the CT DEEP web page www.ct.gov/deep/imperviouscoverstudies and EPA's web page www.epa.gov/caddis/ssr-urb-is1.html. In general, the higher the percentage of IC in a watershed, the poorer the surface water quality. Research in Connecticut strongly suggests that aquatic life will be harmed when the IC within a watershed exceeds 12%. Stormwater pollution from IC is a likely cause of impairment for these waterbodies. ## Town of Berlin: Impervious Cover Data This chart shows the amount of area within your town that contains IC. Data is grouped by acres and percent IC. While all levels of IC can contribute stormwater to streams, it is important to note that land with IC greater than 12% in town is likely to be contributing enough stormwater to streams to have a negative impact on water quality. Towns should aim to make stormwater improvements in areas with IC greater than 12% in an effort to reduce the amount of stormwater pollution reaching surface waters which will protect and improve water quality. For more information on areas of impervious cover within your town, please see the maps at the back of this factsheet. Amounts of Impervious Cover within the Town of Berlin #### **Pollution Reduction** Waterbodies often can handle a certain amount of pollutants and still maintain good water quality. However, impaired waterbodies have too much pollution impacting their water quality and therefore the streams do not support all uses for the waterbody. Total Maximum Daily Loads (TMDLs) are pollution reduction budgets developed for impaired waterbodies in order to meet water quality. If the pollution budget is achieved through the recommended pollution reduction measures, then the waterbody is expected to meet water quality. CT DEEP also supports impaired waters restoration through watershed based plans (www.ct.gov/deep/watershed) which provide more specific non-point source pollution control measures. The following TMDLs or pollution reduction strategies have been developed and apply to areas within your town. TMDLs or Strategies Applicable to the Town of Berlin | Name of TMDL | Pollutant | Waterbody Name | Link | |------------------|-----------|-----------------------------|---| | or Strategy | | | | | Statewide | Bacteria | Mattabesset River | www.ct.gov/deep/lib/deep/water/tmdl/st | | Bacteria TMDL | | | atewidebacteria/mattabessetriver4600.pd | | | | | <u>f</u> | | A TMDL Analysis | Bacteria | Mattabesset River / John | www.ct.gov/deep/lib/deep/water/tmdl/t | | for the | | Hall Brook / Little Brook / | mdl_final/mattbasintmdlfinal.pdf | | Mattabesset | | Spruce Brook / Coles | | | River Regional | | Brook / Miner Brook / | | | Basin | | Willow Brook 4600 / | | | | | Belcher Brook / Webster | | | | | Brook / Sawmill Brook / | | | | | Coginchaug River / Willow | | | | | Brook 4602 | | | Quinnipiac River | Bacteria | Harbor Brook / Misery | www.ct.gov/deep/lib/deep/water/tmdl/t | | Regional Basin | | Brook / Quinnipiac River/ | mdl_final/quinnipiac_tmdl_final.pdf | | E.coli TMDL | | Sodum Brook | | | A TMDL Analysis | Nitrogen | Long Island Sound and | www.ct.gov/deep/lib/deep/water/lis_wat | | to Achieve | | contributing watersheds | er_quality/nitrogen_control_program/tmd | | Water Quality | | | <u>l.pdf</u> | | Standards for | | | | | Dissolved | | | | | Oxygen in Long | | | | | Island Sound | | | | | Northeast | Mercury | All CT Inland waters | www.ct.gov/deep/lib/deep/water/tmdl/t | | Regional | | | mdl_final/ne_hg_tmdl.pdf | | Mercury TMDL | | | | For more information on these TMDLs or strategies please go to our website www.ct.gov/deep/tmdl. ## **Stormwater Quality Monitoring** Regular monitoring for targeted pollutants in stormwater provides an indication of potential for water quality impacts and helps identify sources and unlawful discharges. Annual monitoring at 6 locations from different areas of town has been a requirement of the MS4 permit since 2004. CT DEEP uses that information to evaluate the quality of stormwater and the potential for impacts to surface waters as well as to make sure that stormwater is managed properly. Below are 5 graphs tracking stormwater results submitted by your town for 5 parameters reported under the current MS4 General Permit. The results of each stormwater test submitted to CT DEEP by your town is shown. Individual sample results are shown in grey while the average of the samples collected on a particular day is shown in blue, with a line connecting the averages for the various sample dates. The bars show the statistical range of samples for each day with the red squares showing results which are considered to be outliers, that is, very different from the other samples collected on that day. The chart on the graph lists the sample dates and some basic statistics: | Statistic | Description | |-----------------------------|---| | N | Number of stormwater samples collected on that date | | Mean | Average of the results reported for that sample date | | Standard Deviation (StdDev) | A measure of the variability of the results for the sample date | | Minimum | The lowest sample result for the sample date | | Maximum | The highest sample result for the sample date | #### Bacteria Escherichia coli (E. coli) is a bacteria that lives in the intestines of humans and other warmblooded animals and is used to indicate the presence of fecal matter in surface waters. Some strains of *E. coli* and other pathogens found in fecal material cause serious illness in people coming in contact with it. For this reason, high amounts of bacteria will cause authorities to close beaches for swimming. Bacteria is measured as the number of colony forming units, or CFU, per 100 ml of water. Any result that was reported as "to numerous to count" is included on the chart as 800,000 CFU/100 mL. # Results of annual stormwater monitoring under MS4 permit for *E.coli* (CFU/ 100 mL of sample) Town of Berlin To support recreational uses of surface waters, the CT DEEP Water Quality Standards indicate that the average amount of *E. coli* found in a freshwater water body should be less than 126 CFU/100 mL and that a single sample tested for *E. coli* should be less than 235 CFU/100 mL at a designated swimming area and less than 410 CFU/100 mL in other areas. Monitoring for *E. coli* is currently required in the MS4 permit. Enterococci is another bacteria used to indicate the presence of fecal material in salt water environments. For recreation in salt water the Water Quality Standards indicate that average amount of Enterococci should be less than 35 CFU/100 mL in a designated swimming area and that a single sample tested for Enterococci should be less than 104 CFU/100 mL and in all other areas less than 500 CFU/100 mL. These targets have been included in the statewide bacteria TMDLs. In the Draft MS4 permit, *E.coli* results higher than 235 CFU/100 mL at a designated swimming area or greater than 410 CFU/100 mL in other areas requires a follow-up investigation. Individual stormwater sample results that exceed the applicable single sample maximum value for bacteria could impact water quality, so the associated outfalls should be evaluated for additional stormwater management. ## **Total Suspended Solids** Total Suspended Solids (TSS) is a measurement of the amount of solids (including sand and silt) found in the stormwater sample. High concentrations of TSS can lower water quality in the receiving stream by transporting various pollutants to the waterbody where they can directly affect aquatic life or affect aquatic life by absorbing light, reducing photosynthesis, and by making the water warmer. TSS can also clog fish gills and smother fish eggs and suffocate the organisms that fish eat. TSS comes from erosion and is found in agricultural, urban and industrial runoff. TSS can be reduced by protecting land from erosion and allowing stormwater time to settle before discharging to surface waters. Results of annual stormwater monitoring under the MS4 general permit for TSS (mg/L) Town of Berlin Currently, there is not a water quality based target for TSS in stormwater but TSS is a general indicator of water quality and, lower amounts of TSS are better. For comparison purposes, the average MS4 stormwater result reported for TSS by all towns covered by this permit is 48 mg/L. Areas within your town which have elevated TSS may be places to consider additional stormwater management efforts. ## Total Nitrogen Nitrogen is an important nutrient in marine and estuarine waters such as Long Island Sound, as well as a concern in fresh water lakes and rivers. High amounts of nitrogen can lead to excessive growth of water plants and algae which then reduces the amount of oxygen available to living things in these waters. Unlawful discharges, animal waste, failing septic systems, leaves, litter and fertilizers are common sources of high nitrogen in stormwater. Responsible use of fertilizers, maintaining septic systems and proper disposal of pet waste will help reduce nitrogen in stormwater. Results of annual stormwater monitoring under MS4 general permit for total nitrogen (Total N mg/L) Town of Berlin The TMDL for Long Island
Sound requires a 10% reduction of nitrogen in stormwater discharges to prevent low oxygen conditions in Long Island Sound. Each town should be working to reduce the amount of nitrogen in their stormwater to address this issue. Under the current draft MS4 permit, any result for total nitrogen greater than 2.5 mg/L will require a follow-up investigation. Areas within your town which have elevated nitrogen may be places to consider additional stormwater management activities. ## **Total Phosphorus** Phosphorus is an important nutrient necessary for growth in plants and animals in freshwater. Too much phosphorus in the water can throw off the balance of aquatic ecosystems causing excessive growth of water plants and algae blooms, which reduces the amount of oxygen in the water, potentially harming the fish. Sometimes these algae blooms can contain toxic forms of algae which are harmful to people and animals that come into contact with it. Sources of high phosphorus can be unlawful discharges, fertilizers, litter, leaves, erosion and animal waste. Results of annual stormwater monitoring under MS4 permit for total phosphorus (mg/L) Town of Berlin CT DEEP is actively working with many towns to reduce the amount of phosphorus reaching Connecticut's streams and rivers. Under the current draft MS4 permit, a total phosphorus result greater than 0.3 mg/L will require a follow-up investigation. Areas of your town that have elevated levels of phosphorus in the stormwater are good places to develop additional stormwater controls. ## **Turbidity** Turbidity measures the clarity of the stormwater sample. It measures how much material (soil, algae, pollution, microbes etc.) is suspended in the sample. High turbidity lowers the water quality of a surface water by blocking sunlight for the plants and makes food harder for the fish to find and may be an indication of a higher amounts of other pollution in the water. Surface waters with high turbidity are visually less appealing for recreational use. High turbidity can be caused by erosion, failing septic systems, decaying plants or animals, and excessive algae growth. Turbidity is reported in Nephelometric Turbidity Units (NTU) which is related to how easily light passes through the water sample. Results of annual stormwater monitoring under MS4 permit for turbidity (NTU) Town of Berlin The Water Quality Standards have a criterion that indicates turbidity should not to exceed 5 NTU above ambient levels. In the draft MS4 permit, a turbidity result greater than 5 NTU over instream conditions will require a follow-up investigation. While there is not a fixed statewide criterion for turbidity, lower results are better for the health of the surface waters in town. Areas with higher levels of turbidity in stormwater would be a good place to develop additional stormwater controls. ## Town Maps The following maps were created to show the impervious cover (IC) in your town as well as the water quality in the rivers, streams, lakes and estuaries in and around your town. Impervious Cover on the Town Maps IC is shown in red on the maps. Dark red areas indicate a higher percentage of IC, lighter red areas have less IC, while the grey areas indicate very little or no IC. Water Quality on the Town Maps Separate maps are provided for the different uses of the waterbodies such as Aquatic Life Uses, Recreation, and Shellfishing (in coastal towns). The waterbodies are colored to show the health of the waterbody. Green means that the waterbody meets the water quality requirements to fully support the specified use. Yellow means that water quality is poor and that the specified use is not met. Blue means that there is not enough information to know whether or not water quality is good or bad to support the specified use. Additionally, a small map is provided on the left side of each larger map to show which watersheds are within your town. 79 Elm Street • Hartford, CT 06106-5127 www.ct.gov/deep Affirmative Action/Equal Opportunity Employer ## **Factsheet: Town of Bethany Water Quality and Stormwater Summary** This document was created for each town that has submitted monitoring data under the current Small Municipal Separate Storm Sewer System (MS4) General Permit. What follows is information on how stormwater can affect water quality in streams and rivers and a summary of data submitted by your town. This factsheet is intended to help you interpret your monitoring results and assist you in compliance with the MS4 program. #### Water Quality in Connecticut Surface waters are important resources that support numerous uses, including water supply, recreation, fishing, shellfishing and sustaining aquatic life. Water quality conditions needed to support these uses are identified within the Connecticut Water Quality Standards (WQS). In order to protect and restore these uses, we need acceptable environmental conditions (physical, chemical and biological) to be present within surface waters. To assess and track water quality conditions, CT DEEP conducts monitoring across the State. The data is synthesized into a biennial state water quality report called the Integrated Water Quality Report. Currently, specific water quality monitoring in the state encompasses about 50% of rivers, 47% of lakes, and 100% of estuary/coastline. In addition, CT DEEP may have information about certain land uses or discharges which could indicate a potential for water quality to be impacted, even if the waterbody has not been fully monitored and assessed. To find more detailed information on water quality in your town, please see the Integrated Water Quality Report (IWQR) on the CT DEEP website at www.ct.gov/deep/iwqr. Information on water quality within your town is also presented on the maps included in this fact sheet. #### Impacts of Impervious Cover on Water Quality Impervious cover (IC) refers to hard surfaces across the landscape such as roads, sidewalks, parking lots and roofs. Studies have focused on the amount of hard surfaces to evaluate the impacts of stormwater runoff from these hard surfaces on water quality and found that IC affects both the quantity and quality of stormwater. IC forces rain to runoff the land, carrying pollutants quickly and directly to lakes and streams instead of soaking into the ground and being filtered by the soil. For more information on impervious cover, please see the CT DEEP web page www.ct.gov/deep/imperviouscoverstudies and EPA's web page www.epa.gov/caddis/ssr-urb-is1.html. In general, the higher the percentage of IC in a watershed, the poorer the surface water quality. Research in Connecticut strongly suggests that aquatic life will be harmed when the IC within a watershed exceeds 12%. Stormwater pollution from IC is a likely cause of impairment for these waterbodies. # Town of Bethany: Impervious Cover Data This chart shows the amount of area within your town that contains IC. Data is grouped by acres and percent IC. While all levels of IC can contribute stormwater to streams, it is important to note that land with IC greater than 12% in town is likely to be contributing enough stormwater to streams to have a negative impact on water quality. Towns should aim to make stormwater improvements in areas with IC greater than 12% in an effort to reduce the amount of stormwater pollution reaching surface waters which will protect and improve water quality. For more information on areas of impervious cover within your town, please see the maps at the back of this factsheet. Amounts of Impervious Cover within the Town of Bethany #### Pollution Reduction Waterbodies often can handle a certain amount of pollutants and still maintain good water quality. However, impaired waterbodies have too much pollution impacting their water quality and therefore the streams do not support all uses for the waterbody. Total Maximum Daily Loads (TMDLs) are pollution reduction budgets developed for impaired waterbodies in order to meet water quality. If the pollution budget is achieved through the recommended pollution reduction measures, then the waterbody is expected to meet water quality. CT DEEP also supports impaired waters restoration through watershed based plans (www.ct.gov/deep/watershed) which provide more specific non-point source pollution control measures. The following TMDLs or pollution reduction strategies have been developed and apply to areas within your town. TMDLs or Strategies Applicable to the Town of Bethany | Name of TMDL | Pollutant | Waterbody | Link | |--|------------|---|---| | or Strategy | | Name | | | Statewide
Bacteria TMDL | Bacteria | Naugatuck River
/ Hockanum
Brook | www.ct.gov/deep/lib/deep/water/tmdl/statewideb
acteria/naugatuckriverhockanumbrook6900.pdf | | Statewide
Bacteria TMDL | Bacteria | West River /
Edgewood Park
Pond | www.ct.gov/deep/lib/deep/water/tmdl/statewideb
acteria/westriver5305.pdf | | A TMDL Analysis
for Recreational
Uses of the
Naugatuck River
Regional Basin | Bacteria | Naugatuck River
/ Steele Brook /
Great Brook /
Mad River / Hop
Brook / Long
Meadow Pond
Brook | www.ct.gov/deep/lib/deep/water/tmdl/tmdl_final/
naugatucktmdl_final.pdf | | Statewide
Bacteria TMDL | Bacteria | Mill River /
Shepard Brook | www.ct.gov/deep/lib/deep/water/tmdl/statewideb acteria/millriver5302.pdf | | A TMDL Analysis
to Achieve
Water Quality
Standards for
Dissolved
Oxygen in Long
Island Sound |
Nitrogen | Long Island
Sound and
contributing
waterbodies | www.ct.gov/deep/lib/deep/water/lis_water_quality
/nitrogen_control_program/tmdl.pdf | | Northeast
Regional
Mercury TMDL | Mercury | All CT Inland
waters | www.ct.gov/deep/lib/deep/water/tmdl/tmdl_final/
ne_hg_tmdl.pdf | | Interim Phosphorus Reduction Strategy | Phosphorus | Certain CT
Inland waters | www.ct.gov/deep/lib/deep/water/water_quality_st
andards/p/interimmgntphosstrat_042614.pdf | For more information on these TMDLs or strategies please go to our website www.ct.gov/deep/tmdl. ## **Stormwater Quality Monitoring** Regular monitoring for targeted pollutants in stormwater provides an indication of potential for water quality impacts and helps identify sources and unlawful discharges. Annual monitoring at 6 locations from different areas of town has been a requirement of the MS4 permit since 2004. CT DEEP uses that information to evaluate the quality of stormwater and the potential for impacts to surface waters as well as to make sure that stormwater is managed properly. Below are 5 graphs tracking stormwater results submitted by your town for 5 parameters reported under the current MS4 General Permit. The results of each stormwater test submitted to CT DEEP by your town is shown. Individual sample results are shown in grey while the average of the samples collected on a particular day is shown in blue, with a line connecting the averages for the various sample dates. The bars show the statistical range of samples for each day with the red squares showing results which are considered to be outliers, that is, very different from the other samples collected on that day. The chart on the graph lists the sample dates and some basic statistics: | Statistic | Description | |-----------------------------|---| | N | Number of stormwater samples collected on that date | | Mean | Average of the results reported for that sample date | | Standard Deviation (StdDev) | A measure of the variability of the results for the sample date | | Minimum | The lowest sample result for the sample date | | Maximum | The highest sample result for the sample date | #### Bacteria Escherichia coli (E. coli) is a bacteria that lives in the intestines of humans and other warmblooded animals and is used to indicate the presence of fecal matter in surface waters. Some strains of *E. coli* and other pathogens found in fecal material cause serious illness in people coming in contact with it. For this reason, high amounts of bacteria will cause authorities to close beaches for swimming. Bacteria is measured as the number of colony forming units, or CFU, per 100 ml of water. Any result that was reported as "to numerous to count" is included on the chart as 800,000 CFU/100 mL. # Results of annual stormwater monitoring under MS4 permit for *E.coli* (CFU/ 100 mL of sample) Town of Bethany To support recreational uses of surface waters, the CT DEEP Water Quality Standards indicate that the average amount of *E. coli* found in a freshwater water body should be less than 126 CFU/100 mL and that a single sample tested for *E. coli* should be less than 235 CFU/100 mL at a designated swimming area and less than 410 CFU/100 mL in other areas. Monitoring for *E. coli* is currently required in the MS4 permit. Enterococci is another bacteria used to indicate the presence of fecal material in salt water environments. For recreation in salt water the Water Quality Standards indicate that average amount of Enterococci should be less than 35 CFU/100 mL in a designated swimming area and that a single sample tested for Enterococci should be less than 104 CFU/100 mL and in all other areas less than 500 CFU/100 mL. These targets have been included in the statewide bacteria TMDLs. In the Draft MS4 permit, *E.coli* results higher than 235 CFU/100 mL at a designated swimming area or greater than 410 CFU/100 mL in other areas requires a follow-up investigation. Individual stormwater sample results that exceed the applicable single sample maximum value for bacteria could impact water quality, so the associated outfalls should be evaluated for additional stormwater management. ## Total Suspended Solids Total Suspended Solids (TSS) is a measurement of the amount of solids (including sand and silt) found in the stormwater sample. High concentrations of TSS can lower water quality in the receiving stream by transporting various pollutants to the waterbody where they can directly affect aquatic life or affect aquatic life by absorbing light, reducing photosynthesis, and by making the water warmer. TSS can also clog fish gills and smother fish eggs and suffocate the organisms that fish eat. TSS comes from erosion and is found in agricultural, urban and industrial runoff. TSS can be reduced by protecting land from erosion and allowing stormwater time to settle before discharging to surface waters. Currently, there is not a water quality based target for TSS in stormwater but TSS is a general indicator of water quality and, lower amounts of TSS are better. For comparison purposes, the average MS4 stormwater result reported for TSS by all towns covered by this permit is 48 mg/L. Areas within your town which have elevated TSS may be places to consider additional stormwater management efforts. ## Total Nitrogen Nitrogen is an important nutrient in marine and estuarine waters such as Long Island Sound, as well as a concern in fresh water lakes and rivers. High amounts of nitrogen can lead to excessive growth of water plants and algae which then reduces the amount of oxygen available to living things in these waters. Unlawful discharges, animal waste, failing septic systems, leaves, litter and fertilizers are common sources of high nitrogen in stormwater. Responsible use of fertilizers, maintaining septic systems and proper disposal of pet waste will help reduce nitrogen in stormwater. Results of annual stormwater monitoring under MS4 general permit for total nitrogen (Total N mg/L) Town of Bethany The TMDL for Long Island Sound requires a 10% reduction of nitrogen in stormwater discharges to prevent low oxygen conditions in Long Island Sound. Each town should be working to reduce the amount of nitrogen in their stormwater to address this issue. Under the current draft MS4 permit, any result for total nitrogen greater than 2.5 mg/L will require a follow-up investigation. Areas within your town which have elevated nitrogen may be places to consider additional stormwater management activities. ## **Total Phosphorus** Phosphorus is an important nutrient necessary for growth in plants and animals in freshwater. Too much phosphorus in the water can throw off the balance of aquatic ecosystems causing excessive growth of water plants and algae blooms, which reduces the amount of oxygen in the water, potentially harming the fish. Sometimes these algae blooms can contain toxic forms of algae which are harmful to people and animals that come into contact with it. Sources of high phosphorus can be unlawful discharges, fertilizers, litter, leaves, erosion and animal waste. Results of annual stormwater monitoring under MS4 permit for total phosphorus (mg/L) Town of Bethany CT DEEP is actively working with many towns to reduce the amount of phosphorus reaching Connecticut's streams and rivers. Under the current draft MS4 permit, a total phosphorus result greater than 0.3 mg/L will require a follow-up investigation. Areas of your town that have elevated levels of phosphorus in the stormwater are good places to develop additional stormwater controls. ## **Turbidity** Turbidity measures the clarity of the stormwater sample. It measures how much material (soil, algae, pollution, microbes etc.) is suspended in the sample. High turbidity lowers the water quality of a surface water by blocking sunlight for the plants and makes food harder for the fish to find and may be an indication of a higher amounts of other pollution in the water. Surface waters with high turbidity are visually less appealing for recreational use. High turbidity can be caused by erosion, failing septic systems, decaying plants or animals, and excessive algae growth. Turbidity is reported in Nephelometric Turbidity Units (NTU) which is related to how easily light passes through the water sample. Results of annual stormwater monitoring under MS4 permit for turbidity (NTU) Town of Bethany The Water Quality Standards have a criterion that indicates turbidity should not to exceed 5 NTU above ambient levels. In the draft MS4 permit, a turbidity result greater than 5 NTU over instream conditions will require a follow-up investigation. While there is not a fixed statewide criterion for turbidity, lower results are better for the health of the surface waters in town. Areas with higher levels of turbidity in stormwater would be a good place to develop additional stormwater controls. ## Town Maps The following maps were created to show the impervious cover (IC) in your town as well as the water quality in the rivers, streams, lakes and estuaries in and around your town. Impervious Cover on the Town Maps IC is shown in red on the maps. Dark red areas indicate a higher percentage of IC, lighter red areas have less IC, while the grey areas indicate very little or no IC. Water Quality on the Town Maps Separate maps are provided for the different uses of the waterbodies such as Aquatic Life Uses, Recreation, and Shellfishing (in coastal towns). The waterbodies are colored to show the health of the waterbody. Green means that the waterbody meets the water quality requirements to fully support the specified use. Yellow means that water quality is poor and that the specified use is not met. Blue means that there is not enough information to know whether or not water quality is good or bad to support the specified use. Additionally, a small map is provided
on the left side of each larger map to show which watersheds are within your town. 79 Elm Street • Hartford, CT 06106-5127 www.ct.gov/deep Affirmative Action/Equal Opportunity Employer # **Factsheet: Town of Bethel Water Quality and Stormwater Summary** This document was created for each town that has submitted monitoring data under the current Small Municipal Separate Storm Sewer System (MS4) General Permit. What follows is information on how stormwater can affect water quality in streams and rivers and a summary of data submitted by your town. This factsheet is intended to help you interpret your monitoring results and assist you in compliance with the MS4 program. #### Water Quality in Connecticut Surface waters are important resources that support numerous uses, including water supply, recreation, fishing, shellfishing and sustaining aquatic life. Water quality conditions needed to support these uses are identified within the Connecticut Water Quality Standards (WQS). In order to protect and restore these uses, we need acceptable environmental conditions (physical, chemical and biological) to be present within surface waters. To assess and track water quality conditions, CT DEEP conducts monitoring across the State. The data is synthesized into a biennial state water quality report called the Integrated Water Quality Report. Currently, specific water quality monitoring in the state encompasses about 50% of rivers, 47% of lakes, and 100% of estuary/coastline. In addition, CT DEEP may have information about certain land uses or discharges which could indicate a potential for water quality to be impacted, even if the waterbody has not been fully monitored and assessed. To find more detailed information on water quality in your town, please see the Integrated Water Quality Report (IWQR) on the CT DEEP website at www.ct.gov/deep/iwqr. Information on water quality within your town is also presented on the maps included in this fact sheet. # Impacts of Impervious Cover on Water Quality Impervious cover (IC) refers to hard surfaces across the landscape such as roads, sidewalks, parking lots and roofs. Studies have focused on the amount of hard surfaces to evaluate the impacts of stormwater runoff from these hard surfaces on water quality and found that IC affects both the quantity and quality of stormwater. IC forces rain to runoff the land, carrying pollutants quickly and directly to lakes and streams instead of soaking into the ground and being filtered by the soil. For more information on impervious cover, please see the CT DEEP web page www.ct.gov/deep/imperviouscoverstudies and EPA's web page www.epa.gov/caddis/ssr-urb-is1.html. In general, the higher the percentage of IC in a watershed, the poorer the surface water quality. Research in Connecticut strongly suggests that aquatic life will be harmed when the IC within a watershed exceeds 12%. Stormwater pollution from IC is a likely cause of impairment for these waterbodies. #### Town of Bethel: Impervious Cover Data This chart shows the amount of area within your town that contains IC. Data is grouped by acres and percent IC. While all levels of IC can contribute stormwater to streams, it is important to note that land with IC greater than 12% in town is likely to be contributing enough stormwater to streams to have a negative impact on water quality. Towns should aim to make stormwater improvements in areas with IC greater than 12% in an effort to reduce the amount of stormwater pollution reaching surface waters which will protect and improve water quality. For more information on areas of impervious cover within your town, please see the maps at the back of this factsheet. Amounts of Impervious Cover within the Town of Bethel #### **Pollution Reduction** Waterbodies often can handle a certain amount of pollutants and still maintain good water quality. However, impaired waterbodies have too much pollution impacting their water quality and therefore the streams do not support all uses for the waterbody. Total Maximum Daily Loads (TMDLs) are pollution reduction budgets developed for impaired waterbodies in order to meet water quality. If the pollution budget is achieved through the recommended pollution reduction measures, then the waterbody is expected to meet water quality. CT DEEP also supports impaired waters restoration through watershed based plans (www.ct.gov/deep/watershed) which provide more specific non-point source pollution control measures. The following TMDLs or pollution reduction strategies have been developed and apply to areas within your town. TMDLs or Strategies Applicable to the Town of Bethel | Name of TMDL | Pollutant | Waterbody Name | Link | |-------------------|---------------|--------------------|--| | or Strategy | | | | | Statewide | Bacteria | Saugatuck River / | www.ct.gov/deep/lib/deep/water/tmdl/statewide | | Bacteria TMDL | | Beaver Brook / | bacteria/saugatuck7200.pdf | | | | Kettle Creek / | | | | | Poplar Plain Brook | | | A TMDL Analysis | Copper, Zinc, | Limekiln Brook | www.ct.gov/deep/lib/deep/water/tmdl/tmdl_final | | for Limekiln | Ammonia | | <u>/limekilnbrooktmdl.pdf</u> | | Brook, Danbury, | and Chlorine | | | | СТ | | | | | A TMDL Analysis | Bacteria | Still River / Miry | www.ct.gov/deep/lib/deep/water/tmdl/tmdl_final | | for Recreational | | Brook / Kohanza | <u>/still_final.pdf</u> | | Uses of the Still | | Brook / | | | River Regional | | Padanaram / | | | Basin | | Sympaug Brook / | | | | | East Swamp Brook | | | | | / Limekiln Brook | | | A TMDL Analysis | Nitrogen | Long Island Sound | www.ct.gov/deep/lib/deep/water/lis_water_quali | | to Achieve | | and contributing | ty/nitrogen_control_program/tmdl.pdf | | Water Quality | | watersheds | | | Standards for | | | | | Dissolved | | | | | Oxygen in Long | | | | | Island Sound | D.4 | All CT Laborat | at a set the set the set of s | | Northeast | Mercury | All CT Inland | www.ct.gov/deep/lib/deep/water/tmdl/tmdl_final | | Regional | | waters | /ne_hg_tmdl.pdf | | Mercury TMDL | Dhaadhaa | Cantain CT Inland | | | Interim | Phosphorus | Certain CT Inland | www.ct.gov/deep/lib/deep/water/water_quality | | Phosphorus | | waters | standards/p/interimmgntphosstrat_042614.pdf | | Reduction | | | | | Strategy | | | | For more information on these TMDLs or strategies please go to our website $\underline{www.ct.gov/deep/tmdl}$. ## **Stormwater Quality Monitoring** Regular monitoring for targeted pollutants in stormwater provides an indication of potential for water quality impacts and helps identify sources and unlawful discharges. Annual monitoring at 6 locations from different areas of town has been a requirement of the MS4 permit since 2004. CT DEEP uses that information to evaluate the quality of stormwater and the potential for impacts to surface waters as well as to make sure that stormwater is managed properly. Below are 5 graphs tracking stormwater results submitted by your town for 5 parameters reported under the current MS4 General Permit. The results of each stormwater test submitted to CT DEEP by your town is shown. Individual sample results are shown in grey while the average of the samples collected on a particular day is shown in blue, with a line connecting the averages for the various sample dates. The bars show the statistical range of samples for each day with the red squares showing results which are considered to be outliers, that is, very different from the other samples collected on that day. The chart on the graph lists the sample dates and some basic statistics: | Statistic | Description | |-----------------------------|---| | N | Number of stormwater samples collected on that date | |
Mean | Average of the results reported for that sample date | | Standard Deviation (StdDev) | A measure of the variability of the results for the sample date | | Minimum | The lowest sample result for the sample date | | Maximum | The highest sample result for the sample date | #### Bacteria Escherichia coli (E. coli) is a bacteria that lives in the intestines of humans and other warmblooded animals and is used to indicate the presence of fecal matter in surface waters. Some strains of *E. coli* and other pathogens found in fecal material cause serious illness in people coming in contact with it. For this reason, high amounts of bacteria will cause authorities to close beaches for swimming. Bacteria is measured as the number of colony forming units, or CFU, per 100 ml of water. Any result that was reported as "to numerous to count" is included on the chart as 800,000 CFU/100 mL. # Results of annual stormwater monitoring under MS4 permit for *E.coli* (CFU/ 100 mL of sample) Town of Bethel To support recreational uses of surface waters, the CT DEEP Water Quality Standards indicate that the average amount of *E. coli* found in a freshwater water body should be less than 126 CFU/100 mL and that a single sample tested for *E. coli* should be less than 235 CFU/100 mL at a designated swimming area and less than 410 CFU/100 mL in other areas. Monitoring for *E. coli* is currently required in the MS4 permit. Enterococci is another bacteria used to indicate the presence of fecal material in salt water environments. For recreation in salt water the Water Quality Standards indicate that average amount of Enterococci should be less than 35 CFU/100 mL in a designated swimming area and that a single sample tested for Enterococci should be less than 104 CFU/100 mL and in all other areas less than 500 CFU/100 mL. These targets have been included in the statewide bacteria TMDLs. In the Draft MS4 permit, *E.coli* results higher than 235 CFU/100 mL at a designated swimming area or greater than 410 CFU/100 mL in other areas requires a follow-up investigation. Individual stormwater sample results that exceed the applicable single sample maximum value for bacteria could impact water quality, so the associated outfalls should be evaluated for additional stormwater management. ## Total Suspended Solids Total Suspended Solids (TSS) is a measurement of the amount of solids (including sand and silt) found in the stormwater sample. High concentrations of TSS can lower water quality in the receiving stream by transporting various pollutants to the waterbody where they can directly affect aquatic life or affect aquatic life by absorbing light, reducing photosynthesis, and by making the water warmer. TSS can also clog fish gills and smother fish eggs and suffocate the organisms that fish eat. TSS comes from erosion and is found in agricultural, urban and industrial runoff. TSS can be reduced by protecting land from erosion and allowing stormwater time to settle before discharging to surface waters. Results of annual stormwater monitoring under the MS4 general permit for TSS (mg/L) Town of Bethel Currently, there is not a water quality based target for TSS in stormwater but TSS is a general indicator of water quality and, lower amounts of TSS are better. For comparison purposes, the average MS4 stormwater result reported for TSS by all towns covered by this permit is 48 mg/L. Areas within your town which have elevated TSS may be places to consider additional stormwater management efforts. ## Total Nitrogen Nitrogen is an important nutrient in marine and estuarine waters such as Long Island Sound, as well as a concern in fresh water lakes and rivers. High amounts of nitrogen can lead to excessive growth of water plants and algae which then reduces the amount of oxygen available to living things in these waters. Unlawful discharges, animal waste, failing septic systems, leaves, litter and fertilizers are common sources of high nitrogen in stormwater. Responsible use of fertilizers, maintaining septic systems and proper disposal of pet waste will help reduce nitrogen in stormwater. Results of annual stormwater monitoring under MS4 general permit for total nitrogen (Total N mg/L) Town of Bethel The TMDL for Long Island Sound requires a 10% reduction of nitrogen in stormwater discharges to prevent low oxygen conditions in Long Island Sound. Each town should be working to reduce the amount of nitrogen in their stormwater to address this issue. Under the current draft MS4 permit, any result for total nitrogen greater than 2.5 mg/L will require a follow-up investigation. Areas within your town which have elevated nitrogen may be places to consider additional stormwater management activities. ## **Total Phosphorus** Phosphorus is an important nutrient necessary for growth in plants and animals in freshwater. Too much phosphorus in the water can throw off the balance of aquatic ecosystems causing excessive growth of water plants and algae blooms, which reduces the amount of oxygen in the water, potentially harming the fish. Sometimes these algae blooms can contain toxic forms of algae which are harmful to people and animals that come into contact with it. Sources of high phosphorus can be unlawful discharges, fertilizers, litter, leaves, erosion and animal waste. Results of annual stormwater monitoring under MS4 permit for total phosphorus (mg/L) Town of Bethel CT DEEP is actively working with many towns to reduce the amount of phosphorus reaching Connecticut's streams and rivers. Under the current draft MS4 permit, a total phosphorus result greater than 0.3 mg/L will require a follow-up investigation. Areas of your town that have elevated levels of phosphorus in the stormwater are good places to develop additional stormwater controls. ## **Turbidity** Turbidity measures the clarity of the stormwater sample. It measures how much material (soil, algae, pollution, microbes etc.) is suspended in the sample. High turbidity lowers the water quality of a surface water by blocking sunlight for the plants and makes food harder for the fish to find and may be an indication of a higher amounts of other pollution in the water. Surface waters with high turbidity are visually less appealing for recreational use. High turbidity can be caused by erosion, failing septic systems, decaying plants or animals, and excessive algae growth. Turbidity is reported in Nephelometric Turbidity Units (NTU) which is related to how easily light passes through the water sample. Results of annual stormwater monitoring under MS4 permit for turbidity (NTU) Town of Bethel The Water Quality Standards have a criterion that indicates turbidity should not to exceed 5 NTU above ambient levels. In the draft MS4 permit, a turbidity result greater than 5 NTU over instream conditions will require a follow-up investigation. While there is not a fixed statewide criterion for turbidity, lower results are better for the health of the surface waters in town. Areas with higher levels of turbidity in stormwater would be a good place to develop additional stormwater controls. #### Town Maps The following maps were created to show the impervious cover (IC) in your town as well as the water quality in the rivers, streams, lakes and estuaries in and around your town. Impervious Cover on the Town Maps IC is shown in red on the maps. Dark red areas indicate a higher percentage of IC, lighter red areas have less IC, while the grey areas indicate very little or no IC. Water Quality on the Town Maps Separate maps are provided for the different uses of the waterbodies such as Aquatic Life Uses, Recreation, and Shellfishing (in coastal towns). The waterbodies are colored to show the health of the waterbody. Green means that the waterbody meets the water quality requirements to fully support the specified use. Yellow means that water quality is poor and that the specified use is not met. Blue means that there is not enough information to know whether or not water quality is good or bad to support the specified use. Additionally, a small map is provided on the left side of each larger map to show which watersheds are within your town. 79 Elm Street • Hartford, CT 06106-5127 www.ct.gov/deep Affirmative Action/Equal Opportunity Employer ## **Factsheet: Town of Bloomfield Water Quality and Stormwater Summary** This document was created for each town that has submitted monitoring data under the current Small Municipal Separate Storm Sewer System (MS4) General Permit. What follows is information on how stormwater can affect water quality in streams and rivers and a summary of data submitted by your town. This factsheet is intended to help you interpret your monitoring results and assist you in compliance with the MS4 program. #### Water Quality in Connecticut Surface waters are important resources that support numerous uses, including water supply, recreation, fishing, shellfishing and sustaining aquatic life. Water quality conditions needed to support these uses are identified within the Connecticut Water Quality Standards (WQS). In order to protect and restore these uses, we need acceptable environmental conditions (physical, chemical and biological) to be present within surface waters. To assess and track water quality conditions, CT DEEP conducts monitoring across the State. The data is synthesized into a biennial state water quality report called the Integrated Water Quality Report. Currently, specific water quality monitoring in the state encompasses about 50% of rivers, 47% of lakes, and 100% of estuary/coastline. In addition, CT DEEP may have information about certain land uses or discharges which could indicate a potential for water quality to be impacted, even if the waterbody has not been fully monitored and assessed. To find more detailed information on water quality in your town, please see the Integrated Water Quality Report (IWQR) on the CT DEEP website at www.ct.gov/deep/iwqr. Information on water quality within your town is also presented on the maps included in this fact sheet. ## Impacts of Impervious Cover on Water Quality Impervious cover (IC) refers to hard surfaces across the landscape such as roads, sidewalks, parking lots and roofs. Studies have focused on the amount of hard surfaces to evaluate the impacts of stormwater runoff from these hard surfaces on water quality and found that IC affects both the quantity and quality of stormwater. IC forces rain to runoff the land, carrying pollutants quickly and directly to lakes and streams instead of soaking into the ground and being filtered by the soil. For more information on impervious cover, please see the CT DEEP web page www.ct.gov/deep/imperviouscoverstudies and EPA's web page www.epa.gov/caddis/ssr-urb-is1.html. In general, the higher the percentage of IC in a watershed, the poorer the surface water quality. Research in Connecticut strongly suggests that aquatic life will be harmed when the IC within a watershed exceeds 12%. Stormwater pollution from IC is a likely cause of impairment for these waterbodies. ## Town of Bloomfield: Impervious Cover Data This chart shows the amount of area within your town that contains IC. Data is grouped by acres and percent IC. While all levels of IC can contribute stormwater to streams, it is important to note that land with IC greater than 12% in town is likely to be contributing enough stormwater to streams to have a negative impact on water quality. Towns should aim to make stormwater improvements in areas with IC greater than 12% in an effort to reduce the amount of stormwater pollution reaching surface waters which will protect and improve water quality. For more information on areas of impervious cover within your town, please see the maps at the back of this factsheet. Amounts of Impervious Cover within the Town of Bloomfield #### Pollution Reduction Waterbodies often can handle a certain amount of pollutants and still maintain good water quality. However, impaired waterbodies have too much pollution impacting their water quality and therefore the streams do not support all uses for the waterbody. Total Maximum Daily Loads (TMDLs) are pollution reduction budgets developed for impaired waterbodies in order to meet water quality. If the pollution budget is achieved through the recommended pollution reduction measures, then the waterbody is expected to meet water quality. CT DEEP also supports impaired waters restoration through watershed based plans (www.ct.gov/deep/watershed) which provide more specific non-point source pollution control measures. The following TMDLs or pollution reduction strategies have been developed and apply to areas within your town. TMDLs or Strategies Applicable to the Town of Bloomfield | Name of TMDL | Pollutant | Waterbody | Link | |-----------------|------------|-----------------|--| | or Strategy | · Ondiant | Name | | | Statewide | Bacteria | Farmington | www.ct.gov/deep/lib/deep/water/tmdl/statewideb | | Bacteria TMDL | | River (02) / | acteria/farmingtonriver4300.pdf | | | | Munniskunk | | | | | Brook / Owens | | | | | Brook / Russell | | | | | Brook / | | | | | Minister Brook | | | Statewide | Bacteria | Connecticut | www.ct.gov/deep/lib/deep/water/tmdl/statewideb | | Bacteria TMDL | | River | acteria/connecticutriver4000.pdf | | Statewide | Bacteria | Mill Brook | www.ct.gov/deep/lib/deep/water/tmdl/statewideb | | Bacteria TMDL | | | acteria/millbrook4321.pdf | | Statewide | Bacteria | Park River / | www.ct.gov/deep/lib/deep/water/tmdl/statewideb | | Bacteria TMDL | | South Branch | acteria/parkriver4400.pdf | | | | Park River | | | Statewide | Bacteria | North Branch | www.ct.gov/deep/lib/deep/water/tmdl/statewideb | | Bacteria TMDL | | Park River | acteria/nbranchparkriver4404.pdf | | A TMDL Analysis | Nitrogen | Long Island | www.ct.gov/deep/lib/deep/water/lis_water_quality | | to Achieve | | Sound and | /nitrogen_control_program/tmdl.pdf | | Water Quality | | contributing | | | Standards for | | watersheds | | | Dissolved | | | | | Oxygen in Long | | | | | Island Sound | | | | | Northeast | Mercury | All CT Inland | www.ct.gov/deep/lib/deep/water/tmdl/tmdl_final/ | | Regional | | waters | ne_hg_tmdl.pdf | | Mercury TMDL | | | | | Interim | Phosphorus | Certain CT | www.ct.gov/deep/lib/deep/water/water_quality_st | | Phosphorus | | Inland waters | andards/p/interimmgntphosstrat_042614.pdf | | Reduction | | | | | Strategy | | | | For more information on these TMDLs or strategies please go to our website www.ct.gov/deep/tmdl. ## **Stormwater Quality Monitoring** Regular monitoring for targeted pollutants in stormwater provides an indication of potential for water quality impacts and helps identify sources and unlawful discharges. Annual monitoring at 6 locations from different areas of town has been a requirement of the MS4 permit since 2004. CT DEEP uses that information to evaluate the quality of stormwater and the potential for impacts to surface waters as well as to make sure that stormwater is managed properly. Below are 5 graphs tracking stormwater results submitted by your town for 5 parameters reported under the current MS4 General Permit. The results of each stormwater test submitted to CT DEEP by your town is shown. Individual sample results are shown in grey while the average of the samples collected on a particular day is shown in blue, with a line connecting the averages for the various sample dates. The bars show the statistical range of samples for each day with the red squares showing results which are considered to be outliers, that is, very different from the other samples collected on that day. The chart on the graph lists the sample dates and some basic statistics: | Statistic | Description | |-----------------------------|---| | N | Number of stormwater samples collected on that date | | Mean | Average of the results reported for that sample date | | Standard Deviation (StdDev) | A measure of the variability of the results for the sample date | | Minimum | The lowest sample result for the sample date | | Maximum | The highest sample result for the sample date | #### Bacteria Escherichia coli (E. coli) is a bacteria that lives in the intestines of humans and other warmblooded animals and is used to indicate the presence of fecal matter in surface waters. Some strains of *E. coli* and other pathogens found in fecal material cause serious illness in people coming in contact with it. For this reason, high amounts of bacteria will cause authorities to close beaches for swimming. Bacteria is measured as the number of colony forming units, or CFU, per 100 ml of water. Any result that was reported as "to numerous to count" is included on the chart as 800,000 CFU/100 mL. # Results of annual stormwater monitoring under MS4 permit for *E.coli* (CFU/ 100 mL of sample) Town of Bloomfield To support recreational uses of surface waters, the CT DEEP Water Quality Standards indicate that the average amount of *E. coli* found in a freshwater water body should be less than 126 CFU/100 mL and that a single sample tested for *E. coli* should be less than 235 CFU/100 mL at a designated swimming area and less than 410 CFU/100 mL in other areas. Monitoring for *E. coli* is currently required in the MS4 permit. Enterococci is another bacteria used to indicate the presence of fecal material in salt water environments. For recreation in salt water the Water Quality Standards indicate that average amount of Enterococci should be less than 35 CFU/100 mL in a designated swimming area and that a single sample tested for Enterococci should be less than 104 CFU/100 mL and in all other areas less than 500 CFU/100 mL. These targets have been included in the statewide bacteria TMDLs. In the Draft MS4 permit, *E.coli* results higher than 235 CFU/100 mL at a designated swimming area or greater than 410 CFU/100 mL in other areas requires a follow-up investigation. Individual stormwater sample results that exceed the applicable single sample maximum value for bacteria could impact water quality, so the associated outfalls should be evaluated for additional stormwater management. ## Total Suspended Solids Total Suspended Solids (TSS) is a measurement of the amount of solids (including sand and silt) found in the stormwater sample. High concentrations of TSS can lower water quality in the receiving stream by transporting various pollutants to the waterbody where they can directly affect aquatic life or affect aquatic life by absorbing light, reducing photosynthesis, and by making the water warmer. TSS can also clog fish gills and smother fish eggs and suffocate the organisms that fish eat. TSS comes from erosion and is found in agricultural, urban and industrial runoff. TSS can be reduced by protecting land from erosion and allowing stormwater time to settle before discharging to surface waters. Currently, there is not a water quality based target for TSS in stormwater but TSS is a general indicator of water quality and, lower amounts of TSS are better. For comparison purposes, the average MS4 stormwater result reported for TSS by all towns covered by this permit is 48 mg/L. Areas within your town which have elevated TSS may be places to consider additional stormwater management efforts. #### Total Nitrogen Nitrogen is an important nutrient in marine and estuarine waters such as Long Island Sound, as well as a concern in fresh water lakes and rivers. High amounts of nitrogen can lead to excessive growth of water plants and algae which then reduces the amount of oxygen available to living things in these
waters. Unlawful discharges, animal waste, failing septic systems, leaves, litter and fertilizers are common sources of high nitrogen in stormwater. Responsible use of fertilizers, maintaining septic systems and proper disposal of pet waste will help reduce nitrogen in stormwater. Results of annual stormwater monitoring under MS4 general permit for total nitrogen (Total N mg/L) Town of Bloomfield The TMDL for Long Island Sound requires a 10% reduction of nitrogen in stormwater discharges to prevent low oxygen conditions in Long Island Sound. Each town should be working to reduce the amount of nitrogen in their stormwater to address this issue. Under the current draft MS4 permit, any result for total nitrogen greater than 2.5 mg/L will require a follow-up investigation. Areas within your town which have elevated nitrogen may be places to consider additional stormwater management activities. #### **Total Phosphorus** Phosphorus is an important nutrient necessary for growth in plants and animals in freshwater. Too much phosphorus in the water can throw off the balance of aquatic ecosystems causing excessive growth of water plants and algae blooms, which reduces the amount of oxygen in the water, potentially harming the fish. Sometimes these algae blooms can contain toxic forms of algae which are harmful to people and animals that come into contact with it. Sources of high phosphorus can be unlawful discharges, fertilizers, litter, leaves, erosion and animal waste. Results of annual stormwater monitoring under MS4 permit for total phosphorus (mg/L) Town of Bloomfield CT DEEP is actively working with many towns to reduce the amount of phosphorus reaching Connecticut's streams and rivers. Under the current draft MS4 permit, a total phosphorus result greater than 0.3 mg/L will require a follow-up investigation. Areas of your town that have elevated levels of phosphorus in the stormwater are good places to develop additional stormwater controls. #### **Turbidity** Turbidity measures the clarity of the stormwater sample. It measures how much material (soil, algae, pollution, microbes etc.) is suspended in the sample. High turbidity lowers the water quality of a surface water by blocking sunlight for the plants and makes food harder for the fish to find and may be an indication of a higher amounts of other pollution in the water. Surface waters with high turbidity are visually less appealing for recreational use. High turbidity can be caused by erosion, failing septic systems, decaying plants or animals, and excessive algae growth. Turbidity is reported in Nephelometric Turbidity Units (NTU) which is related to how easily light passes through the water sample. Results of annual stormwater monitoring under MS4 permit for turbidity (NTU) <u>Town of Bloomfield</u> The Water Quality Standards have a criterion that indicates turbidity should not to exceed 5 NTU above ambient levels. In the draft MS4 permit, a turbidity result greater than 5 NTU over instream conditions will require a follow-up investigation. While there is not a fixed statewide criterion for turbidity, lower results are better for the health of the surface waters in town. Areas with higher levels of turbidity in stormwater would be a good place to develop additional stormwater controls. #### Town Maps The following maps were created to show the impervious cover (IC) in your town as well as the water quality in the rivers, streams, lakes and estuaries in and around your town. Impervious Cover on the Town Maps IC is shown in red on the maps. Dark red areas indicate a higher percentage of IC, lighter red areas have less IC, while the grey areas indicate very little or no IC. Water Quality on the Town Maps Separate maps are provided for the different uses of the waterbodies such as Aquatic Life Uses, Recreation, and Shellfishing (in coastal towns). The waterbodies are colored to show the health of the waterbody. Green means that the waterbody meets the water quality requirements to fully support the specified use. Yellow means that water quality is poor and that the specified use is not met. Blue means that there is not enough information to know whether or not water quality is good or bad to support the specified use. Additionally, a small map is provided on the left side of each larger map to show which watersheds are within your town. 79 Elm Street • Hartford, CT 06106-5127 www.ct.gov/deep Affirmative Action/Equal Opportunity Employer ## **Factsheet: Town of Bolton Water Quality and Stormwater Summary** This document was created for each town that has submitted monitoring data under the current Small Municipal Separate Storm Sewer System (MS4) General Permit. What follows is information on how stormwater can affect water quality in streams and rivers and a summary of data submitted by your town. This factsheet is intended to help you interpret your monitoring results and assist you in compliance with the MS4 program. #### Water Quality in Connecticut Surface waters are important resources that support numerous uses, including water supply, recreation, fishing, shellfishing and sustaining aquatic life. Water quality conditions needed to support these uses are identified within the Connecticut Water Quality Standards (WQS). In order to protect and restore these uses, we need acceptable environmental conditions (physical, chemical and biological) to be present within surface waters. To assess and track water quality conditions, CT DEEP conducts monitoring across the State. The data is synthesized into a biennial state water quality report called the Integrated Water Quality Report. Currently, specific water quality monitoring in the state encompasses about 50% of rivers, 47% of lakes, and 100% of estuary/coastline. In addition, CT DEEP may have information about certain land uses or discharges which could indicate a potential for water quality to be impacted, even if the waterbody has not been fully monitored and assessed. To find more detailed information on water quality in your town, please see the Integrated Water Quality Report (IWQR) on the CT DEEP website at www.ct.gov/deep/iwqr. Information on water quality within your town is also presented on the maps included in this fact sheet. #### Impacts of Impervious Cover on Water Quality Impervious cover (IC) refers to hard surfaces across the landscape such as roads, sidewalks, parking lots and roofs. Studies have focused on the amount of hard surfaces to evaluate the impacts of stormwater runoff from these hard surfaces on water quality and found that IC affects both the quantity and quality of stormwater. IC forces rain to runoff the land, carrying pollutants quickly and directly to lakes and streams instead of soaking into the ground and being filtered by the soil. For more information on impervious cover, please see the CT DEEP web page www.ct.gov/deep/imperviouscoverstudies and EPA's web page www.epa.gov/caddis/ssr-urb-is1.html. In general, the higher the percentage of IC in a watershed, the poorer the surface water quality. Research in Connecticut strongly suggests that aquatic life will be harmed when the IC within a watershed exceeds 12%. Stormwater pollution from IC is a likely cause of impairment for these waterbodies. #### Town of Bolton: Impervious Cover Data This chart shows the amount of area within your town that contains IC. Data is grouped by acres and percent IC. While all levels of IC can contribute stormwater to streams, it is important to note that land with IC greater than 12% in town is likely to be contributing enough stormwater to streams to have a negative impact on water quality. Towns should aim to make stormwater improvements in areas with IC greater than 12% in an effort to reduce the amount of stormwater pollution reaching surface waters which will protect and improve water quality. For more information on areas of impervious cover within your town, please see the maps at the back of this factsheet. Amounts of Impervious Cover within the Town of Bolton #### **Pollution Reduction** Waterbodies often can handle a certain amount of pollutants and still maintain good water quality. However, impaired waterbodies have too much pollution impacting their water quality and therefore the streams do not support all uses for the waterbody. Total Maximum Daily Loads (TMDLs) are pollution reduction budgets developed for impaired waterbodies in order to meet water quality. If the pollution budget is achieved through the recommended pollution reduction measures, then the waterbody is expected to meet water quality. CT DEEP also supports impaired waters restoration through watershed based plans (www.ct.gov/deep/watershed) which provide more specific non-point source pollution control measures. The following TMDLs or pollution reduction strategies have been developed and apply to areas within your town. TMDLs or Strategies Applicable to the Town of Bolton | Name of TMDL or | Pollutant | Waterbody | Link | |--------------------|------------|-----------------|--| | Strategy | | Name | | | Statewide Bacteria | Bacteria | Hop River | www.ct.gov/deep/lib/deep/water/tmdl/statewide | | TMDL | | | <u>bacteria/hopriver3108.pdf</u> | | A TMDL Analysis | Bacteria | Gay City Pond | www.ct.gov/deep/lib/deep/water/tmdl/tmdl_final | | for Allen Brook | | | /allenbrookfinal.pdf | | Pond, Allen Brook, | | | | | Gay City Pond, and | | | | | Schreeder Pond | | | | | A Total Maximum | Bacteria | Hockanum | www.ct.gov/deep/lib/deep/water/tmdl/tmdl_final | | Daily Load for the | | River and | <u>/hockanum_final.pdf</u> | | Hockanum River | | Charters Brook | | | Regional Basin | | | | | Statewide Bacteria | Bacteria | Roaring Brook / | www.ct.gov/deep/lib/deep/water/tmdl/statewide
 | TMDL | | Angus Park | bacteria/roaringbrook4009.pdf | | | | Pond | | | A TMDL Analysis to | Nitrogen | Long Island | www.ct.gov/deep/lib/deep/water/lis_water_quali | | Achieve Water | | Sound and | ty/nitrogen_control_program/tmdl.pdf | | Quality Standards | | contributing | | | for Dissolved | | watersheds | | | Oxygen in Long | | | | | Island Sound | | | | | Northeast Regional | Mercury | All CT Inland | www.ct.gov/deep/lib/deep/water/tmdl/tmdl_final | | Mercury TMDL | | waters | <u>/ne_hg_tmdl.pdf</u> | | | | | | | Interim | Phosphorus | Certain CT | www.ct.gov/deep/lib/deep/water/water_quality_ | | Phosphorus | | Inland waters | standards/p/interimmgntphosstrat_042614.pdf | | Reduction Strategy | | | | For more information on these TMDLs or strategies please go to our website www.ct.gov/deep/tmdl. #### **Stormwater Quality Monitoring** Regular monitoring for targeted pollutants in stormwater provides an indication of potential for water quality impacts and helps identify sources and unlawful discharges. Annual monitoring at 6 locations from different areas of town has been a requirement of the MS4 permit since 2004. CT DEEP uses that information to evaluate the quality of stormwater and the potential for impacts to surface waters as well as to make sure that stormwater is managed properly. Below are 5 graphs tracking stormwater results submitted by your town for 5 parameters reported under the current MS4 General Permit. The results of each stormwater test submitted to CT DEEP by your town is shown. Individual sample results are shown in grey while the average of the samples collected on a particular day is shown in blue, with a line connecting the averages for the various sample dates. The bars show the statistical range of samples for each day with the red squares showing results which are considered to be outliers, that is, very different from the other samples collected on that day. The chart on the graph lists the sample dates and some basic statistics: | Statistic | Description | |-----------------------------|---| | N | Number of stormwater samples collected on that date | | Mean | Average of the results reported for that sample date | | Standard Deviation (StdDev) | A measure of the variability of the results for the sample date | | Minimum | The lowest sample result for the sample date | | Maximum | The highest sample result for the sample date | #### Bacteria Escherichia coli (E. coli) is a bacteria that lives in the intestines of humans and other warmblooded animals and is used to indicate the presence of fecal matter in surface waters. Some strains of *E. coli* and other pathogens found in fecal material cause serious illness in people coming in contact with it. For this reason, high amounts of bacteria will cause authorities to close beaches for swimming. Bacteria is measured as the number of colony forming units, or CFU, per 100 ml of water. Any result that was reported as "to numerous to count" is included on the chart as 800,000 CFU/100 mL. # Results of annual stormwater monitoring under MS4 permit for *E.coli* (CFU/ 100 mL of sample) Town of Bolton To support recreational uses of surface waters, the CT DEEP Water Quality Standards indicate that the average amount of *E. coli* found in a freshwater water body should be less than 126 CFU/100 mL and that a single sample tested for *E. coli* should be less than 235 CFU/100 mL at a designated swimming area and less than 410 CFU/100 mL in other areas. Monitoring for *E. coli* is currently required in the MS4 permit. Enterococci is another bacteria used to indicate the presence of fecal material in salt water environments. For recreation in salt water the Water Quality Standards indicate that average amount of Enterococci should be less than 35 CFU/100 mL in a designated swimming area and that a single sample tested for Enterococci should be less than 104 CFU/100 mL and in all other areas less than 500 CFU/100 mL. These targets have been included in the statewide bacteria TMDLs. In the Draft MS4 permit, *E.coli* results higher than 235 CFU/100 mL at a designated swimming area or greater than 410 CFU/100 mL in other areas requires a follow-up investigation. Individual stormwater sample results that exceed the applicable single sample maximum value for bacteria could impact water quality, so the associated outfalls should be evaluated for additional stormwater management. #### **Total Suspended Solids** Total Suspended Solids (TSS) is a measurement of the amount of solids (including sand and silt) found in the stormwater sample. High concentrations of TSS can lower water quality in the receiving stream by transporting various pollutants to the waterbody where they can directly affect aquatic life or affect aquatic life by absorbing light, reducing photosynthesis, and by making the water warmer. TSS can also clog fish gills and smother fish eggs and suffocate the organisms that fish eat. TSS comes from erosion and is found in agricultural, urban and industrial runoff. TSS can be reduced by protecting land from erosion and allowing stormwater time to settle before discharging to surface waters. Currently, there is not a water quality based target for TSS in stormwater but TSS is a general indicator of water quality and, lower amounts of TSS are better. For comparison purposes, the average MS4 stormwater result reported for TSS by all towns covered by this permit is 48 mg/L. Areas within your town which have elevated TSS may be places to consider additional stormwater management efforts. #### Total Nitrogen Nitrogen is an important nutrient in marine and estuarine waters such as Long Island Sound, as well as a concern in fresh water lakes and rivers. High amounts of nitrogen can lead to excessive growth of water plants and algae which then reduces the amount of oxygen available to living things in these waters. Unlawful discharges, animal waste, failing septic systems, leaves, litter and fertilizers are common sources of high nitrogen in stormwater. Responsible use of fertilizers, maintaining septic systems and proper disposal of pet waste will help reduce nitrogen in stormwater. Results of annual stormwater monitoring under MS4 general permit for total nitrogen (Total N mg/L) <u>Town of Bolton</u> The TMDL for Long Island Sound requires a 10% reduction of nitrogen in stormwater discharges to prevent low oxygen conditions in Long Island Sound. Each town should be working to reduce the amount of nitrogen in their stormwater to address this issue. Under the current draft MS4 permit, any result for total nitrogen greater than 2.5 mg/L will require a follow-up investigation. Areas within your town which have elevated nitrogen may be places to consider additional stormwater management activities. ## **Total Phosphorus** Phosphorus is an important nutrient necessary for growth in plants and animals in freshwater. Too much phosphorus in the water can throw off the balance of aquatic ecosystems causing excessive growth of water plants and algae blooms, which reduces the amount of oxygen in the water, potentially harming the fish. Sometimes these algae blooms can contain toxic forms of algae which are harmful to people and animals that come into contact with it. Sources of high phosphorus can be unlawful discharges, fertilizers, litter, leaves, erosion and animal waste. # Results of annual stormwater monitoring under MS4 permit for total phosphorus (mg/L) Town of Bolton CT DEEP is actively working with many towns to reduce the amount of phosphorus reaching Connecticut's streams and rivers. Under the current draft MS4 permit, a total phosphorus result greater than 0.3 mg/L will require a follow-up investigation. Areas of your town that have elevated levels of phosphorus in the stormwater are good places to develop additional stormwater controls. #### **Turbidity** Turbidity measures the clarity of the stormwater sample. It measures how much material (soil, algae, pollution, microbes etc.) is suspended in the sample. High turbidity lowers the water quality of a surface water by blocking sunlight for the plants and makes food harder for the fish to find and may be an indication of a higher amounts of other pollution in the water. Surface waters with high turbidity are visually less appealing for recreational use. High turbidity can be caused by erosion, failing septic systems, decaying plants or animals, and excessive algae growth. Turbidity is reported in Nephelometric Turbidity Units (NTU) which is related to how easily light passes through the water sample. Results of annual stormwater monitoring under MS4 permit for turbidity (NTU) Town of Bolton The Water Quality Standards have a criterion that indicates turbidity should not to exceed 5 NTU above ambient levels. In the draft MS4 permit, a turbidity result greater than 5 NTU over instream conditions will require a follow-up investigation. While there is not a fixed statewide criterion for turbidity, lower results are better for the health of the surface waters in town. Areas with higher levels of turbidity in stormwater would be a good place to develop additional stormwater controls. ## Town Maps The following maps were created to show the impervious cover (IC) in your town as well as the water quality in the rivers, streams, lakes and estuaries in and around your town. Impervious Cover on the Town Maps IC is shown in red on the maps. Dark red areas indicate a higher percentage of IC, lighter red areas have less IC, while the grey areas indicate very little or no IC. Water Quality on the Town Maps Separate maps are provided for the different uses of the waterbodies such as Aquatic Life Uses, Recreation, and Shellfishing (in coastal towns). The waterbodies are colored to show the health of the waterbody. Green means that the waterbody meets the water quality requirements to fully support the specified
use. Yellow means that water quality is poor and that the specified use is not met. Blue means that there is not enough information to know whether or not water quality is good or bad to support the specified use. Additionally, a small map is provided on the left side of each larger map to show which watersheds are within your town. 79 Elm Street • Hartford, CT 06106-5127 www.ct.gov/deep Affirmative Action/Equal Opportunity Employer ## **Factsheet: Town of Branford Water Quality and Stormwater Summary** This document was created for each town that has submitted monitoring data under the current Small Municipal Separate Storm Sewer System (MS4) General Permit. What follows is information on how stormwater can affect water quality in streams and rivers and a summary of data submitted by your town. This factsheet is intended to help you interpret your monitoring results and assist you in compliance with the MS4 program. #### Water Quality in Connecticut Surface waters are important resources that support numerous uses, including water supply, recreation, fishing, shellfishing and sustaining aquatic life. Water quality conditions needed to support these uses are identified within the Connecticut Water Quality Standards (WQS). In order to protect and restore these uses, we need acceptable environmental conditions (physical, chemical and biological) to be present within surface waters. To assess and track water quality conditions, CT DEEP conducts monitoring across the State. The data is synthesized into a biennial state water quality report called the Integrated Water Quality Report. Currently, specific water quality monitoring in the state encompasses about 50% of rivers, 47% of lakes, and 100% of estuary/coastline. In addition, CT DEEP may have information about certain land uses or discharges which could indicate a potential for water quality to be impacted, even if the waterbody has not been fully monitored and assessed. To find more detailed information on water quality in your town, please see the Integrated Water Quality Report (IWQR) on the CT DEEP website at www.ct.gov/deep/iwqr. Information on water quality within your town is also presented on the maps included in this fact sheet. #### Impacts of Impervious Cover on Water Quality Impervious cover (IC) refers to hard surfaces across the landscape such as roads, sidewalks, parking lots and roofs. Studies have focused on the amount of hard surfaces to evaluate the impacts of stormwater runoff from these hard surfaces on water quality and found that IC affects both the quantity and quality of stormwater. IC forces rain to runoff the land, carrying pollutants quickly and directly to lakes and streams instead of soaking into the ground and being filtered by the soil. For more information on impervious cover, please see the CT DEEP web page www.ct.gov/deep/imperviouscoverstudies and EPA's web page www.epa.gov/caddis/ssr-urb-is1.html. In general, the higher the percentage of IC in a watershed, the poorer the surface water quality. Research in Connecticut strongly suggests that aquatic life will be harmed when the IC within a watershed exceeds 12%. Stormwater pollution from IC is a likely cause of impairment for these waterbodies. #### Town of Branford: Impervious Cover Data This chart shows the amount of area within your town that contains IC. Data is grouped by acres and percent IC. While all levels of IC can contribute stormwater to streams, it is important to note that land with IC greater than 12% in town is likely to be contributing enough stormwater to streams to have a negative impact on water quality. Towns should aim to make stormwater improvements in areas with IC greater than 12% in an effort to reduce the amount of stormwater pollution reaching surface waters which will protect and improve water quality. For more information on areas of impervious cover within your town, please see the maps at the back of this factsheet. Amounts of Impervious Cover within the Town of Branford #### Pollution Reduction Waterbodies often can handle a certain amount of pollutants and still maintain good water quality. However, impaired waterbodies have too much pollution impacting their water quality and therefore the streams do not support all uses for the waterbody. Total Maximum Daily Loads (TMDLs) are pollution reduction budgets developed for impaired waterbodies in order to meet water quality. If the pollution budget is achieved through the recommended pollution reduction measures, then the waterbody is expected to meet water quality. CT DEEP also supports impaired waters restoration through watershed based plans (www.ct.gov/deep/watershed) which provide more specific non-point source pollution control measures. The following TMDLs or pollution reduction strategies have been developed and apply to areas within your town. TMDLs or Strategies Applicable to the Town of Branford | Name of TMDL or
Strategy | Pollutant | Waterbody
Name | Link | |-----------------------------|------------|--------------------------|--| | Statewide Bacteria TMDL | Bacteria | Estuary 8:
Branford / | www.ct.gov/deep/lib/deep/water/tmdl/st | | TIVIDL | | East Haven | atewidebacteria/estuary8 branford easth aven.pdf | | Statewide Bacteria | Bacteria | Farm River | www.ct.gov/deep/lib/deep/water/tmdl/st | | TMDL | | | atewidebacteria/farmriver5112.pdf | | A TMDL Analysis for | Phosphorus | Cedar Pond | www.ct.gov/deep/lib/deep/water/tmdl/t | | Cedar Pond in North | | | mdl final/cedarfinaltmdl.pdf | | Branford, CT | | | | | A TMDL Analysis for | Phosphorus | Linsley Pond | www.ct.gov/deep/lib/deep/water/tmdl/t | | Linsley Pond in North | | | mdl final/linsleyfinaltmdl.pdf | | Branford and | | | | | Branford, CT | | | | | A TMDL Analysis to | Nitrogen | Long Island | www.ct.gov/deep/lib/deep/water/lis_wat | | Achieve Water Quality | | Sound and | er_quality/nitrogen_control_program/tmd | | Standards for | | contributing | <u>l.pdf</u> | | Dissolved Oxygen in | | watersheds | | | Long Island Sound | | | | | Northeast Regional | Mercury | All CT Inland | www.ct.gov/deep/lib/deep/water/tmdl/t | | Mercury TMDL | | waters | mdl_final/ne_hg_tmdl.pdf | For more information on these TMDLs or strategies please go to our website www.ct.gov/deep/tmdl. #### **Stormwater Quality Monitoring** Regular monitoring for targeted pollutants in stormwater provides an indication of potential for water quality impacts and helps identify sources and unlawful discharges. Annual monitoring at 6 locations from different areas of town has been a requirement of the MS4 permit since 2004. CT DEEP uses that information to evaluate the quality of stormwater and the potential for impacts to surface waters as well as to make sure that stormwater is managed properly. Below are 5 graphs tracking stormwater results submitted by your town for 5 parameters reported under the current MS4 General Permit. The results of each stormwater test submitted to CT DEEP by your town is shown. Individual sample results are shown in grey while the average of the samples collected on a particular day is shown in blue, with a line connecting the averages for the various sample dates. The bars show the statistical range of samples for each day with the red squares showing results which are considered to be outliers, that is, very different from the other samples collected on that day. The chart on the graph lists the sample dates and some basic statistics: | Statistic | Description | |-----------------------------|---| | N | Number of stormwater samples collected on that date | | Mean | Average of the results reported for that sample date | | Standard Deviation (StdDev) | A measure of the variability of the results for the sample date | | Minimum | The lowest sample result for the sample date | | Maximum | The highest sample result for the sample date | #### Bacteria Escherichia coli (E. coli) is a bacteria that lives in the intestines of humans and other warmblooded animals and is used to indicate the presence of fecal matter in surface waters. Some strains of *E. coli* and other pathogens found in fecal material cause serious illness in people coming in contact with it. For this reason, high amounts of bacteria will cause authorities to close beaches for swimming. Bacteria is measured as the number of colony forming units, or CFU, per 100 ml of water. Any result that was reported as "to numerous to count" is included on the chart as 800,000 CFU/100 mL. # Results of annual stormwater monitoring under MS4 permit for *E.coli* (CFU/ 100 mL of sample) Town of Branford To support recreational uses of surface waters, the CT DEEP Water Quality Standards indicate that the average amount of *E. coli* found in a freshwater water body should be less than 126 CFU/100 mL and that a single sample tested for *E. coli* should be less than 235 CFU/100 mL at a designated swimming area and less than 410 CFU/100 mL in other areas. Monitoring for *E. coli* is currently required in the MS4 permit. Enterococci is another bacteria used to indicate the presence of fecal material in salt water environments. For recreation in salt water the Water Quality Standards indicate that average amount of Enterococci should be less than 35 CFU/100 mL in a designated swimming area and that a single sample tested for Enterococci should be less than 104 CFU/100 mL and in all other areas less than 500 CFU/100 mL. These targets have been included in the statewide bacteria TMDLs. In the Draft MS4 permit, *E.coli* results higher than 235 CFU/100 mL at a designated swimming area or greater than 410 CFU/100 mL in other areas requires a
follow-up investigation. Individual stormwater sample results that exceed the applicable single sample maximum value for bacteria could impact water quality, so the associated outfalls should be evaluated for additional stormwater management. #### **Total Suspended Solids** Total Suspended Solids (TSS) is a measurement of the amount of solids (including sand and silt) found in the stormwater sample. High concentrations of TSS can lower water quality in the receiving stream by transporting various pollutants to the waterbody where they can directly affect aquatic life or affect aquatic life by absorbing light, reducing photosynthesis, and by making the water warmer. TSS can also clog fish gills and smother fish eggs and suffocate the organisms that fish eat. TSS comes from erosion and is found in agricultural, urban and industrial runoff. TSS can be reduced by protecting land from erosion and allowing stormwater time to settle before discharging to surface waters. Currently, there is not a water quality based target for TSS in stormwater but TSS is a general indicator of water quality and, lower amounts of TSS are better. For comparison purposes, the average MS4 stormwater result reported for TSS by all towns covered by this permit is 48 mg/L. Areas within your town which have elevated TSS may be places to consider additional stormwater management efforts. ## Total Nitrogen Nitrogen is an important nutrient in marine and estuarine waters such as Long Island Sound, as well as a concern in fresh water lakes and rivers. High amounts of nitrogen can lead to excessive growth of water plants and algae which then reduces the amount of oxygen available to living things in these waters. Unlawful discharges, animal waste, failing septic systems, leaves, litter and fertilizers are common sources of high nitrogen in stormwater. Responsible use of fertilizers, maintaining septic systems and proper disposal of pet waste will help reduce nitrogen in stormwater. Results of annual stormwater monitoring under MS4 general permit for total nitrogen (Total N mg/L) Town of Branford The TMDL for Long Island Sound requires a 10% reduction of nitrogen in stormwater discharges to prevent low oxygen conditions in Long Island Sound. Each town should be working to reduce the amount of nitrogen in their stormwater to address this issue. Under the current draft MS4 permit, any result for total nitrogen greater than 2.5 mg/L will require a follow-up investigation. Areas within your town which have elevated nitrogen may be places to consider additional stormwater management activities. ## **Total Phosphorus** Phosphorus is an important nutrient necessary for growth in plants and animals in freshwater. Too much phosphorus in the water can throw off the balance of aquatic ecosystems causing excessive growth of water plants and algae blooms, which reduces the amount of oxygen in the water, potentially harming the fish. Sometimes these algae blooms can contain toxic forms of algae which are harmful to people and animals that come into contact with it. Sources of high phosphorus can be unlawful discharges, fertilizers, litter, leaves, erosion and animal waste. Results of annual stormwater monitoring under MS4 permit for total phosphorus (mg/L) Town of Branford CT DEEP is actively working with many towns to reduce the amount of phosphorus reaching Connecticut's streams and rivers. Under the current draft MS4 permit, a total phosphorus result greater than 0.3 mg/L will require a follow-up investigation. Areas of your town that have elevated levels of phosphorus in the stormwater are good places to develop additional stormwater controls. #### **Turbidity** Turbidity measures the clarity of the stormwater sample. It measures how much material (soil, algae, pollution, microbes etc.) is suspended in the sample. High turbidity lowers the water quality of a surface water by blocking sunlight for the plants and makes food harder for the fish to find and may be an indication of a higher amounts of other pollution in the water. Surface waters with high turbidity are visually less appealing for recreational use. High turbidity can be caused by erosion, failing septic systems, decaying plants or animals, and excessive algae growth. Turbidity is reported in Nephelometric Turbidity Units (NTU) which is related to how easily light passes through the water sample. Results of annual stormwater monitoring under MS4 permit for turbidity (NTU) <u>Town of Branford</u> The Water Quality Standards have a criterion that indicates turbidity should not to exceed 5 NTU above ambient levels. In the draft MS4 permit, a turbidity result greater than 5 NTU over instream conditions will require a follow-up investigation. While there is not a fixed statewide criterion for turbidity, lower results are better for the health of the surface waters in town. Areas with higher levels of turbidity in stormwater would be a good place to develop additional stormwater controls. ## Town Maps The following maps were created to show the impervious cover (IC) in your town as well as the water quality in the rivers, streams, lakes and estuaries in and around your town. Impervious Cover on the Town Maps IC is shown in red on the maps. Dark red areas indicate a higher percentage of IC, lighter red areas have less IC, while the grey areas indicate very little or no IC. Water Quality on the Town Maps Separate maps are provided for the different uses of the waterbodies such as Aquatic Life Uses, Recreation, and Shellfishing (in coastal towns). The waterbodies are colored to show the health of the waterbody. Green means that the waterbody meets the water quality requirements to fully support the specified use. Yellow means that water quality is poor and that the specified use is not met. Blue means that there is not enough information to know whether or not water quality is good or bad to support the specified use. Additionally, a small map is provided on the left side of each larger map to show which watersheds are within your town. # Waters Designated For Shellfishing in the Town of Branford Percent Impervious Cover Designated For Shellfishing 0-1196 Fully Supporting 12-25% Not Supporting 26-50% Unassessed 51-75% 78-100% Subregional Basins Branford River South Central Shoreline Farm River These maps were created using the National Land Cover Database (NLCD) 2011 Impervious Cover Percent Data. For more detail please review the metadata document. Impervious cover (IC) refers to hard surfaces across the landscape such as pavement or buildings. These hard surfaces do not absorb water and prevent rain from soaking into the ground. As a result, runoff occurs and easily carries pollutants to nearby lakes and streams. STATE OF CONNECTICUT DEPARTMENT OF ENERGY & ENVIRONMENTAL PROTECTION TO SING. CT 08109-912T 79 Elm Street • Hartford, CT 06106-5127 www.ct.gov/deep Affirmative Action/Equal Opportunity Employer ### **Factsheet: City of Bridgeport Water Quality and Stormwater Summary** This document was created for each town that has submitted monitoring data under the current Small Municipal Separate Storm Sewer System (MS4) General Permit. What follows is information on how stormwater can affect water quality in streams and rivers and a summary of data submitted by your town. This factsheet is intended to help you interpret your monitoring results and assist you in compliance with the MS4 program. #### Water Quality in Connecticut Surface waters are important resources that support numerous uses, including water supply, recreation, fishing, shellfishing and sustaining aquatic life. Water quality conditions needed to support these uses are identified within the Connecticut Water Quality Standards (WQS). In order to protect and restore these uses, we need acceptable environmental conditions (physical, chemical and biological) to be present within surface waters. To assess and track water quality conditions, CT DEEP conducts monitoring across the State. The data is synthesized into a biennial state water quality report called the Integrated Water Quality Report. Currently, specific water quality monitoring in the state encompasses about 50% of rivers, 47% of lakes, and 100% of estuary/coastline. In addition, CT DEEP may have information about certain land uses or discharges which could indicate a potential for water quality to be impacted, even if the waterbody has not been fully monitored and assessed. To find more detailed information on water quality in your town, please see the Integrated Water Quality Report (IWQR) on the CT DEEP website at www.ct.gov/deep/iwqr. Information on water quality within your town is also presented on the maps included in this fact sheet. # Impacts of Impervious Cover on Water Quality Impervious cover (IC) refers to hard surfaces across the landscape such as roads, sidewalks, parking lots and roofs. Studies have focused on the amount of hard surfaces to evaluate the impacts of stormwater runoff from these hard surfaces on water quality and found that IC affects both the quantity and quality of stormwater. IC forces rain to runoff the land, carrying pollutants quickly and directly to lakes and streams instead of soaking into the ground and being filtered by the soil. For more information on impervious cover, please see the CT DEEP web page www.ct.gov/deep/imperviouscoverstudies and EPA's web page www.epa.gov/caddis/ssr-urb-is1.html. In general, the higher the percentage of IC in a watershed, the poorer the surface water quality. Research in Connecticut strongly suggests that aquatic life will be harmed when the IC within a watershed exceeds 12%. Stormwater pollution from IC is a likely cause of impairment for these waterbodies. # City of Ansonia: Impervious Cover Data This chart shows the amount of area within your town
that contains IC. Data is grouped by acres and percent IC. While all levels of IC can contribute stormwater to streams, it is important to note that land with IC greater than 12% in town is likely to be contributing enough stormwater to streams to have a negative impact on water quality. Towns should aim to make stormwater improvements in areas with IC greater than 12% in an effort to reduce the amount of stormwater pollution reaching surface waters which will protect and improve water quality. For more information on areas of impervious cover within your town, please see the maps at the back of this factsheet. Amounts of Impervious Cover within the City of Bridgeport #### **Pollution Reduction** Waterbodies often can handle a certain amount of pollutants and still maintain good water quality. However, impaired waterbodies have too much pollution impacting their water quality and therefore the streams do not support all uses for the waterbody. Total Maximum Daily Loads (TMDLs) are pollution reduction budgets developed for impaired waterbodies in order to meet water quality. If the pollution budget is achieved through the recommended pollution reduction measures, then the waterbody is expected to meet water quality. CT DEEP also supports impaired waters restoration through watershed based plans (www.ct.gov/deep/watershed) which provide more specific non-point source pollution control measures. The following TMDLs or pollution reduction strategies have been developed and apply to areas within your town. TMDLs or Strategies Applicable to the City of Bridgeport | Name of TMDL or | Pollutant | Waterbody Name | Link | |----------------------------|-----------|----------------------|---| | Strategy | | | | | Statewide Bacteria TMDL | Bacteria | Bruce Brook | www.ct.gov/deep/lib/deep/water/tmdl/stat | | | | | ewidebacteria/brucebrook7102.pdf | | Statewide Bacteria TMDL | Bacteria | Estuary 7: | www.ct.gov/deep/lib/deep/water/tmdl/stat | | | | Bridgeport | ewidebacteria/estuary7bridgeport.pdf | | Statewide Bacteria TMDL | Bacteria | Pequonnock River / | www.ct.gov/deep/lib/deep/water/tmdl/stat | | | | West Branch | ewidebacteria/pequonnockriver7105.pdf | | | | Pequonnock River | | | A TMDL Analysis for the | Bacteria | Mill River / Rooster | www.ct.gov/deep/lib/deep/water/tmdl/tmd | | Mill River, Rooster River, | | River / Sasco Brook | <u>l_final/swebasintmdlfinal.pdf</u> | | and Sasco Brook | | | | | A TMDL Analysis for | Bacteria | Mill River / Sasco | www.ct.gov/deep/lib/deep/water/tmdl/tmd | | Southport Harbor | | Brook / Southport | <u>l_final/southport_h_final.pdf</u> | | Shellfishing Areas - | | Harbor | | | Fairfield, CT | | | | | A TMDL Analysis to | Nitrogen | Long Island Sound | www.ct.gov/deep/lib/deep/water/lis_water | | Achieve Water Quality | | and contributing | _quality/nitrogen_control_program/tmdl.pd | | Standards for Dissolved | | watersheds | <u>f</u> | | Oxygen in Long Island | | | | | Sound | | | | | Northeast Regional | Mercury | All CT Inland | www.ct.gov/deep/lib/deep/water/tmdl/tmd | | Mercury TMDL | | waters | <u>I_final/ne_hg_tmdl.pdf</u> | For more information on these TMDLs or strategies please go to our website www.ct.gov/deep/tmdl. # **Stormwater Quality Monitoring** Regular monitoring for targeted pollutants in stormwater provides an indication of potential for water quality impacts and helps identify sources and unlawful discharges. Annual monitoring at 6 locations from different areas of town has been a requirement of the MS4 permit since 2004. CT DEEP uses that information to evaluate the quality of stormwater and the potential for impacts to surface waters as well as to make sure that stormwater is managed properly. Below are 5 graphs tracking stormwater results submitted by your town for 5 parameters reported under the current MS4 General Permit. The results of each stormwater test submitted to CT DEEP by your town is shown. Individual sample results are shown in grey while the average of the samples collected on a particular day is shown in blue, with a line connecting the averages for the various sample dates. The bars show the statistical range of samples for each day with the red squares showing results which are considered to be outliers, that is, very different from the other samples collected on that day. The chart on the graph lists the sample dates and some basic statistics: | Statistic | Description | |-----------------------------|---| | N | Number of stormwater samples collected on that date | | Mean | Average of the results reported for that sample date | | Standard Deviation (StdDev) | A measure of the variability of the results for the sample date | | Minimum | The lowest sample result for the sample date | | Maximum | The highest sample result for the sample date | # <u>Bacteria</u> Escherichia coli (E. coli) is a bacteria that lives in the intestines of humans and other warmblooded animals and is used to indicate the presence of fecal matter in surface waters. Some strains of *E. coli* and other pathogens found in fecal material cause serious illness in people coming in contact with it. For this reason, high amounts of bacteria will cause authorities to close beaches for swimming. Bacteria is measured as the number of colony forming units, or CFU, per 100 ml of water. Any result that was reported as "to numerous to count" is included on the chart as 800,000 CFU/100 mL. # Results of annual stormwater monitoring under MS4 permit for *E.coli* (CFU/ 100 mL of sample) <u>City of Bridgeport</u> To support recreational uses of surface waters, the CT DEEP Water Quality Standards indicate that the average amount of *E. coli* found in a freshwater water body should be less than 126 CFU/100 mL and that a single sample tested for *E. coli* should be less than 235 CFU/100 mL at a designated swimming area and less than 410 CFU/100 mL in other areas. Monitoring for *E. coli* is currently required in the MS4 permit. Enterococci is another bacteria used to indicate the presence of fecal material in salt water environments. For recreation in salt water the Water Quality Standards indicate that average amount of Enterococci should be less than 35 CFU/100 mL in a designated swimming area and that a single sample tested for Enterococci should be less than 104 CFU/100 mL and in all other areas less than 500 CFU/100 mL. These targets have been included in the statewide bacteria TMDLs. In the Draft MS4 permit, *E.coli* results higher than 235 CFU/100 mL at a designated swimming area or greater than 410 CFU/100 mL in other areas requires a follow-up investigation. Individual stormwater sample results that exceed the applicable single sample maximum value for bacteria could impact water quality, so the associated outfalls should be evaluated for additional stormwater management. ### Total Suspended Solids Total Suspended Solids (TSS) is a measurement of the amount of solids (including sand and silt) found in the stormwater sample. High concentrations of TSS can lower water quality in the receiving stream by transporting various pollutants to the waterbody where they can directly affect aquatic life or affect aquatic life by absorbing light, reducing photosynthesis, and by making the water warmer. TSS can also clog fish gills and smother fish eggs and suffocate the organisms that fish eat. TSS comes from erosion and is found in agricultural, urban and industrial runoff. TSS can be reduced by protecting land from erosion and allowing stormwater time to settle before discharging to surface waters. Results of annual stormwater monitoring under the MS4 general permit for TSS (mg/L) <u>City of Bridgeport</u> Currently, there is not a water quality based target for TSS in stormwater but TSS is a general indicator of water quality and, lower amounts of TSS are better. For comparison purposes, the average MS4 stormwater result reported for TSS by all towns covered by this permit is 48 mg/L. Areas within your town which have elevated TSS may be places to consider additional stormwater management efforts. ### Total Nitrogen Nitrogen is an important nutrient in marine and estuarine waters such as Long Island Sound, as well as a concern in fresh water lakes and rivers. High amounts of nitrogen can lead to excessive growth of water plants and algae which then reduces the amount of oxygen available to living things in these waters. Unlawful discharges, animal waste, failing septic systems, leaves, litter and fertilizers are common sources of high nitrogen in stormwater. Responsible use of fertilizers, maintaining septic systems and proper disposal of pet waste will help reduce nitrogen in stormwater. Results of annual stormwater monitoring under MS4 general permit for total nitrogen (Total N mg/L) <u>City of Bridgeport</u> The TMDL for Long Island Sound requires a 10% reduction of nitrogen in stormwater discharges to prevent low oxygen conditions in Long Island Sound. Each town should be working to reduce the amount of nitrogen in their stormwater to address this issue. Under the current draft MS4 permit, any result for total nitrogen greater than 2.5 mg/L will require a follow-up investigation. Areas within your town which have elevated nitrogen may be places to consider additional stormwater management activities. # **Total Phosphorus** Phosphorus is an important nutrient necessary for growth in plants and animals in freshwater. Too much phosphorus in the water can throw off the balance of aquatic ecosystems causing excessive growth of water plants and algae blooms, which reduces the amount of oxygen in the water, potentially harming the fish. Sometimes these algae blooms can contain toxic forms of algae which are harmful to people and animals that come into contact with it. Sources of high phosphorus can be unlawful discharges, fertilizers, litter, leaves,
erosion and animal waste. Results of annual stormwater monitoring under MS4 permit for total phosphorus (mg/L) City of Bridgeport CT DEEP is actively working with many towns to reduce the amount of phosphorus reaching Connecticut's streams and rivers. Under the current draft MS4 permit, a total phosphorus result greater than 0.3 mg/L will require a follow-up investigation. Areas of your town that have elevated levels of phosphorus in the stormwater are good places to develop additional stormwater controls. ### **Turbidity** Turbidity measures the clarity of the stormwater sample. It measures how much material (soil, algae, pollution, microbes etc.) is suspended in the sample. High turbidity lowers the water quality of a surface water by blocking sunlight for the plants and makes food harder for the fish to find and may be an indication of a higher amounts of other pollution in the water. Surface waters with high turbidity are visually less appealing for recreational use. High turbidity can be caused by erosion, failing septic systems, decaying plants or animals, and excessive algae growth. Turbidity is reported in Nephelometric Turbidity Units (NTU) which is related to how easily light passes through the water sample. The Water Quality Standards have a criterion that indicates turbidity should not to exceed 5 NTU above ambient levels. In the draft MS4 permit, a turbidity result greater than 5 NTU over instream conditions will require a follow-up investigation. While there is not a fixed statewide criterion for turbidity, lower results are better for the health of the surface waters in town. Areas with higher levels of turbidity in stormwater would be a good place to develop additional stormwater controls. # Town Maps The following maps were created to show the impervious cover (IC) in your town as well as the water quality in the rivers, streams, lakes and estuaries in and around your town. Impervious Cover on the Town Maps IC is shown in red on the maps. Dark red areas indicate a higher percentage of IC, lighter red areas have less IC, while the grey areas indicate very little or no IC. Water Quality on the Town Maps Separate maps are provided for the different uses of the waterbodies such as Aquatic Life Uses, Recreation, and Shellfishing (in coastal towns). The waterbodies are colored to show the health of the waterbody. Green means that the waterbody meets the water quality requirements to fully support the specified use. Yellow means that water quality is poor and that the specified use is not met. Blue means that there is not enough information to know whether or not water quality is good or bad to support the specified use. Additionally, a small map is provided on the left side of each larger map to show which watersheds are within your town.